16.函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

分析 根據(jù)利用函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是$\frac{2π}{2}$=π,
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(a+1)lnx-ax,試討論f(x)在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{a}$=(1,0,-1),$\overrightarrow$=(1,-1,0),單位向量$\overrightarrow{n}$滿足$\overrightarrow{n}$⊥$\overrightarrow{a}$,$\overrightarrow{n}$⊥$\overrightarrow$,則$\overrightarrow{n}$=($\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)直線l:y=-$\frac{3}{4}$x+$\frac{5}{4}$,圓O:x2+y2-4x-2y+1=0,求直線l被圓O所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合U={1,2,3,4,5,6},M={1,3,4},則∁UM( 。
A.{3,5,6}B.{1,3,5}C.{2,5,6}D.U

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=2ax-$\frac{x}$+lnx在x=1與x=$\frac{1}{2}$處都取得極值.
(1)求a,b的值;
(2)若對x∈[$\frac{1}{4}$,1]時,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的首項a1=1,且an+1=2an+3,n∈N+
(1)求證:數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{n(an+3)}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.現(xiàn)用數(shù)學(xué)歸納法證明“空間中n個平面,最多將空間分成$\frac{{{n^3}+5n+6}}{6}$個區(qū)域”,過程中由n=k到n=k+1時,應(yīng)證明區(qū)域個數(shù)增加了(  )
A.$\frac{{{k^2}+k+2}}{2}$B.k2+k+2C.$\frac{{{k^2}+k}}{6}$D.$\frac{{{k^2}+1}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項和為Sn,若a1=2,$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),則滿足不等式anSn≤2200的最大正整數(shù)n的值為10.

查看答案和解析>>

同步練習(xí)冊答案