已知函數(shù)f(x)=
x+a
x2+1
,x∈[-1,1]為奇函數(shù).
(1)求f(
1
2
)的值;
(2)判斷f(x)在定義域上單調(diào)性,并證明你的結(jié)論.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)f(x)為奇函數(shù),所以f(-x)=-f(x),帶入f(x)解析式即可求得a;
(2)求f′(x),根據(jù)f′(x)在定義域上的符號(hào)即可判斷f(x)在定義域上的單調(diào)性.
解答: 解:(1)f(-x)=
-x+a
x2+1
=-
x+a
x2+1
;
∴-x+a=-x-a,∴a=0;
∴f(x)=
x
x2+1
,f(
1
2
)═
2
5
;
(2)f′(x)=
x2+1-x(2x)
(x2+1)2
=
1-x2
(x2+1)2

∵x∈[-1,1],∴1-x2≥0,f′(x)≥0;
∴函數(shù)f(x)在[-1,1]上單調(diào)遞增.
點(diǎn)評(píng):考查奇函數(shù)的定義,以及根據(jù)導(dǎo)數(shù)符號(hào)判斷函數(shù)在一區(qū)間上單調(diào)性的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,且tan(
π
4
+α)=-2,計(jì)算
4sinα-2cosα
5cosα+3sinα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果sin(3π+θ)=
1
4
,求:
cos(π+θ)
cosθ[cos(π+θ)-1]
+
cos(θ-2π)
cos(θ+2π)cos(π+θ)+cos(-θ)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx在區(qū)間(-2,1)內(nèi),當(dāng)x=-1時(shí)取得極小值,當(dāng)x=
2
3
時(shí)取得極大值.
(1)求函數(shù)y=f(x)在x=-2時(shí)的對(duì)應(yīng)點(diǎn)的切線方程.
(2)求函數(shù)f(x)在[-2,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C=
π
3

(1)若△ABC的面積等于
3
,求a,b;
(2)若sin(A+C)=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
3
sinωx•cosωx+sin2ωx+k,(ω>0).
(1)若f(x)圖象中相鄰兩條對(duì)稱軸間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
π
6
]時(shí),f(x)的最大值是
1
2
,求f(x)最小值,并說(shuō)明如何由y=sin2x的圖象變換得到y(tǒng)=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+4),且x∈(0,2]時(shí),f(x)=
3x
3x+1

(1)求f(x)在[-2,2]上的解析式;
(2)判斷f(x)在[0,2]上的單調(diào)性,并給予證明;
(3)當(dāng)λ為何值時(shí),關(guān)于方程f(x)=λ在[-2,2]上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=
x
+1.
(1)用定義證明:f(x)在(0,+∞)上為增函數(shù);
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
5
3
,定點(diǎn)M(2,0),橢圓短軸的端點(diǎn)是B1,B2,且MB1⊥MB2
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)M且斜率不為0的直線交橢圓C于A,B兩點(diǎn).試問(wèn)x軸上是否存在異于M的定點(diǎn)P,使PM平分∠APB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案