已知ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),MPC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)GAP作平面交平面BDMGH,求證:APGH、

證明:連結(jié)AC,設(shè)ACBDO,連結(jié)MO、

∵ 四邊形ABCD是平行四邊形,

∴ OAC的中點(diǎn)、

MPC的中點(diǎn),

∴ MOPA、

MOBDM、PABDM、

∴ PA∥面BDM

又經(jīng)過(guò)PA與點(diǎn)G的平面交面BDMGH、

∴ APGH、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外的一點(diǎn),則在四棱錐P-ABCD中,M是PC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH.
求證:AP∥GH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱BCD-B1C1D1與四棱錐A-BB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB=2,AD=4,BB1=1.
設(shè)O是線段BD的中點(diǎn).
(1)求證:C1O∥平面AB1D1;
(2)證明:平面AB1D1⊥平面ADD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州二模)如圖,已知在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA=
3
,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點(diǎn).
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過(guò)點(diǎn)F作平面α,使ED∥平面α,當(dāng)平面α⊥平面EDG時(shí),設(shè)PA與平面α交于點(diǎn)Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐V-ABCD,底面ABCD是平行四邊形,點(diǎn)V在平面ABCD上的射影E在AD邊上,且AE=
1
3
ED
,VE=4,BE=EC=2,∠BEC=90°.
(Ⅰ)設(shè)F是BC的中點(diǎn),求異面直線EF與VC所成角的余弦值;
(Ⅱ)設(shè)點(diǎn)P在棱VC上,且DP⊥EC.求
VP
PC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修四數(shù)學(xué)北師版 北師版 題型:013

已知M是平行四邊形ABCD對(duì)角線的交點(diǎn),下列四式中不能化簡(jiǎn)為的是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案