【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結論正確的是__________

①存在點,使得平面平面;

②存在點,使得平面平面;

③若分別是在平面與平面的正投影的面積,則存在點,使得;

的面積可能等于.

【答案】①②③

【解析】

為直線與平面的交點時,①正確;平面,即可得②正確;計算出的條件,可得③正確;面積取得最小值,所以④不正確.

由正方體性質可得平面平面,所以,

是平面內(nèi)兩條相交直線,所以平面,平面,

,同理可證,是平面內(nèi)兩條相交直線,

所以平面,平面,所以平面平面,

為直線與平面的交點時,滿足平面平面,所以①正確;

根據(jù)①證明方法同理可證:,

可以證得平面,平面,所以平面平面,

所以②正確;

,,

時,,得:,即時,滿足,所以③正確;

,均為直角三角形,,

的最小值為,此時,面積取得最小值,

,的面積不可能等于,所以④說法錯誤.

故答案為:①②③

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形與正所在平面互相垂直,平面,.

(1)證明:平面;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項目.為預估今年7月份游客購買水果的情況,隨機抽樣統(tǒng)計了去年7月份100名游客的購買金額.分組如下:, ,得到如圖所示的頻率分布直方圖:

(1)請用抽樣的數(shù)據(jù)估計今年7月份游客人均購買水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點作代表).

(2)若把去年7月份購買水果不低于80元的游客,稱為“水果達人”. 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為“水果達人”與性別有關系?

水果達人

非水果達人

合計

10

30

合計

(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過80元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.若每斤水果10元,你打算購買12斤水果,請從實際付款金額的數(shù)學期望的角度分析應該選擇哪種優(yōu)惠方案.

附:參考公式和數(shù)據(jù):,.臨界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫糖是一種以糖為材料在石板上進行造型的民間藝術,常見于公園與旅游景點.某師傅制作了一種新造型糖畫,為了進行合理定價先進性試銷售,其單價(元)與銷量(個)相關數(shù)據(jù)如下表:

(1)已知銷量與單價具有線性相關關系,求關于的線性相關方程;

(2)若該新造型糖畫每個的成本為元,要使得進入售賣時利潤最大,請利用所求的線性相關關系確定單價應該定為多少元?(結果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計計算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱的底面是邊長為2的正三角形,側棱是線段的延長線上一點,平面分別與相交于.

1)求證:平面

2)求當為何值時,平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學經(jīng)典《九章算術》系統(tǒng)地總結了戰(zhàn)國、秦、漢時期的數(shù)學成就,書中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個陽馬與一個鱉臑的組合體,已知平面,四邊形為正方形,,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】規(guī)定:在桌面上,用母球擊打目標球,使目標球運動,球的位置是指球心的位置,我們說球是指該球的球心點.兩球碰撞后,目標球在兩球的球心所確定的直線上運動,目標球的運動方向是指目標球被母球擊打時,母球球心所指向目標球球心的方向.所有的球都簡化為平面上半徑為1的圓,且母球與目標球有公共點時,目標球就開始運動,在桌面上建立平面直角坐標系,解決下列問題:

1)如圖,設母球的位置為,目標球的位置為,要使目標球處運動,求母球球心運動的直線方程;

2)如圖,若母球的位置為,目標球的位置為,能否讓母球擊打目標球后,使目標球向處運動?

3)若的位置為時,使得母球擊打目標球時,目標球運動方向可以碰到目標球,求的最小值(只需要寫出結果即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的,,三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測:

車間

數(shù)量

50

150

100

(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產(chǎn)品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P在曲線x2+y2=1上運動,過點Px軸的垂線,垂足為Q,動點M滿足.

1)求動點M的軌跡方程;

2)點AB在直線xy4=0上,且AB=4,求△MAB的面積的最大值.

查看答案和解析>>

同步練習冊答案