分析 (1)由頻率分布直方圖,t先求出重量超過505克的產(chǎn)品所占頻率,由此能求出重量超過505克的產(chǎn)品數(shù)量.
(2)抽取的40件產(chǎn)品中任取2件,設(shè)ξ為重量超過505克的產(chǎn)品數(shù)量,則ξ的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出ξ的分布列和E(ξ).
(3)一件產(chǎn)品的重量低于495克或超過510克都要重新包裝,且把頻率視作概率,則任取一件產(chǎn)品需要重新包裝的概率為(0.03+0.01)×5=0.2,現(xiàn)在從該流水線上每間隔30分鐘都隨機(jī)地取出兩件產(chǎn)品進(jìn)行檢測(cè),則兩件產(chǎn)品都不需要重新包裝的概率為0.64,由此得到就目前的生產(chǎn)情況,該流水線需要停產(chǎn).
解答 解:(1)由頻率分布直方圖,得重量超過505克的產(chǎn)品所占頻率為:
(0.05+0.01)×5=0.3,
∴重量超過505克的產(chǎn)品數(shù)量為:0.3×40=12(件).
(2)抽取的40件產(chǎn)品中任取2件,設(shè)ξ為重量超過505克的產(chǎn)品數(shù)量,則ξ的可能取值為0,1,2,
P(ξ=0)=$\frac{{C}_{28}^{2}}{{C}_{40}^{2}}$=$\frac{63}{130}$,
P(ξ=1)=$\frac{{C}_{12}^{1}{C}_{28}^{1}}{{C}_{40}^{2}}$=$\frac{28}{65}$,
P(ξ=2)=$\frac{{C}_{12}^{2}}{{C}_{40}^{2}}$=$\frac{11}{130}$,
∴ξ的分布列為:
ξ | 0 | 1 | 2 |
P | $\frac{63}{130}$ | $\frac{28}{65}$ | $\frac{11}{130}$ |
點(diǎn)評(píng) 本題考查頻數(shù)的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查概率的應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{11}{12}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{6}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {1} | C. | {0} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com