已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項和為Sn,且對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數(shù)列{bn}的任一項bn∈A∩B,其中b1是A∩B中最的小數(shù),且88<b8<93,求{bn}的通項公式;
(3)設(shè)數(shù)列{cn}滿足數(shù)學公式,是否存在正整數(shù)p,q(1<p<q),使得c1,cp,cq成等比數(shù)列?若存在,求出所有的p,q的值;若不存在,請說明理由.

解:(1)∵點Pn(n,Sn)都在函數(shù)f(x)=x2+3x的圖象上,∴
當n=1時,a1=S1=4;
當n≥2時,
當n=1時,也滿足.
故an=2n+2.
(2)∵A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},
∴A={x|x=2n+2,n∈N*},B={x|x=4n+2,n∈N*}
∴A∩B=B,
又∵bn∈A∩B,∴bn∈B即數(shù)列{bn}的公差是4 的倍數(shù)
又A∩B中的最小數(shù)為6,∴b1=6,∴b8=4k+6,k∈N*,
又∵88<b8<93
,解得k=21.
等差數(shù)列{bn}的公差為d,由b8=6+7d=90得d=12,故bn=12n-6
(3)∵,∴
若c1,cp,cq成等比數(shù)列,則,即
可得,所以-2p2+4p+1>0,
從而
又p∈N*,∴p=2,此時q=12.
故當且僅當p=2,q=12,使得c1,cp,cq成等比數(shù)列.
分析:(1)利用點Pn(n,Sn)都在函數(shù)f(x)=x2+3x的圖象上,可得,再寫一式,兩式相減,即可求得數(shù)列{an}的通項公式;
(2)先確定A∩B=B,進而可得數(shù)列{bn}的公差是4 的倍數(shù),利用b1是A∩B中最的小數(shù),且88<b8<93,即可求{bn}的通項公式;
(3)利用c1,cp,cq成等比數(shù)列,建立方程,可求正整數(shù)p,q的值.
點評:本題考查數(shù)列的通項,考查等比數(shù)列的性質(zhì),考查數(shù)列與函數(shù)的聯(lián)系,考查學生分析解決問題的能力,正確確定數(shù)列的通項是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案