如圖,已知直線與拋物線相切于點(diǎn))且與軸交于點(diǎn)為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為.
(1)若動(dòng)點(diǎn)滿足|=,求點(diǎn)的軌跡.
(2)若過(guò)點(diǎn)的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點(diǎn),試求與面積之比的取值范圍.
(1) (2)
【解析】
試題分析:解:(I)由,
∴直線的斜率為,
故的方程為,∴點(diǎn)A坐標(biāo)為(1,0)
設(shè) 則,
由得
整理,得
∴動(dòng)點(diǎn)M的軌跡C為以原點(diǎn)為中心,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為2
的橢圓.
(II)如圖,由題意知直線的斜率存在且不為零,
設(shè)方程為y=k(x-2)(k≠0)①
將①代入,整理,得
,
由得. 設(shè)
則 ②
令,由此可得
由②知
.∴△OBE與△OBF面積之比的取值范圍是.
考點(diǎn):橢圓的方程
點(diǎn)評(píng):關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來(lái),當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:()。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學(xué) 題型:填空題
22.(本題滿分15分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過(guò)拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分18分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過(guò)拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;
(Ⅲ)過(guò)A、B分別作拋物C的切線且交于點(diǎn)M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省月考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分15分)
已知拋物線G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線的距離等于5。
(I)求拋物線G的方程;
(II)如圖,過(guò)拋物線G的焦點(diǎn)的直線依次與拋物線G及圓交于A、C、D、B四點(diǎn),試證明為定值;
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com