已知F1(,0),F(xiàn)2(,0),動點P滿足|PF1|+|[PF2|=4,記動點P的軌跡為E.
(Ⅰ)求E的方程.
(Ⅱ)曲線E的一條切線l,過F1,F(xiàn)2作l發(fā)的垂線,垂足分別為M,N,求|F1M|·|F2N|的值.
(Ⅲ)曲線E的一條切線為l,與x軸,y分別交于A,B兩點,求|AB|的最小值,并求此時切線的斜率.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
7 |
QM |
MP |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省梅村高級中學2012屆高三1月雙周練數(shù)學試題 題型:044
已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:
,
其中,min{f(x)|x∈D}表示函數(shù)f(x)在區(qū)間上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在區(qū)間上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)為區(qū)間[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫出f1(x),f2(x)的表達式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出相應的k;如果不是,請說明理由;
(3)已知b>0函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com