【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)務(wù)極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線,
(1)求曲線,的直角坐標(biāo)方程;
(2)曲線和的交點(diǎn)為,,求以為直徑的圓與軸的交點(diǎn)坐標(biāo).
【答案】(1) : ;: (2) 點(diǎn)坐標(biāo)為或
【解析】
(Ⅰ)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求解曲線的直角坐標(biāo)方程;
(Ⅱ)先求出MN的中點(diǎn)坐標(biāo),|MN|的長(zhǎng),可求得圓的方程,再令x=0,即可求解.
(Ⅰ)由sin(θ+)=,得ρ(sinθcos+cosθsin)=,
將代入上得x+y=1,即C1的直角坐標(biāo)方程為x+y+1=0,
同理由ρ2=,可得3x2-y2=1,∴C2的直角坐標(biāo)方程為3x2-y2=1.
(Ⅱ)∵PM⊥PN,先求以MN為直徑的圓,設(shè)Mx1,y1),N(x2,y2),
由得3x2-(1-x)2=1,即x2+x-1=0,
∴,則MN的中點(diǎn)坐標(biāo)為(-,),
由弦長(zhǎng)公式,可得|MN|=|x1-x2|==.
∴以MN為直徑的圓:(x+)2+(y-)2=()2,
令x=0,得+(y-)2=,即(y-)2=,∴y=0或y=3,
∴所求P點(diǎn)的坐標(biāo)為(0,0)或(0,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元線性同余方程組問(wèn)題最早可見(jiàn)于中國(guó)南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問(wèn)題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問(wèn)物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí), 符合條件的共有_____個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的橢圓的離心率為,橢圓與軸交于兩點(diǎn)、,過(guò)點(diǎn)的直線與橢圓交于另一點(diǎn),并與軸交于點(diǎn),直線與直線交于點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)異于點(diǎn)時(shí),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1:(t為參數(shù)),C2:(m為參數(shù)).
(1)將C1,C2的方程化為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)設(shè)曲線C1與C2的交點(diǎn)分別為A,B,O為坐標(biāo)原點(diǎn),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,,,,,二面角為,為的中點(diǎn),點(diǎn)在上,且
(1)求證:四邊形為直角梯形;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在無(wú)窮數(shù)列中,是給定的正整數(shù),,.
(Ⅰ)若,寫出的值;
(Ⅱ)證明:數(shù)列中存在值為的項(xiàng);
(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無(wú)窮多項(xiàng)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列三個(gè)正方體中,均為所在棱的中點(diǎn),過(guò)作正方體的截面.在各正方體中,直線與平面的位置關(guān)系描述正確的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格紙上的小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的外接球的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.
(1)求證:EF∥平面PAB;
(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com