精英家教網 > 高中數學 > 題目詳情

【題目】我國古代數學專著《九章算術》中有一個“兩鼠穿墻題”,其內容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結果為( 。

A. 3B. 4C. 5D. 6

【答案】C

【解析】

代入,按照流程圖一步一步進行計算,即可得到輸出的.

1步:T2,S2S20成立,a2,b=,n=2,

2步:T,S,S20成立,a4,b=,n=3,

3步:T,S,S20成立,a8,b=n=4,

4步:TS,S20成立,a16,b=n=5,

5步:T,S,S20不成立,退出循環(huán),輸出n=5,故選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中華人民共和國國旗是五星紅旗,旗面左上方綴著的五顆黃色五角星,四顆小五角星環(huán)拱于大星之右,象征中國共產黨領導下的革命人民大團結和人民對黨的衷心擁護.五角星可通過正五邊形連接對角線得到,且它具有一些優(yōu)美的特征,如且等于黃金分割比,現從正五邊形A1B1C1D1E1內隨機取一點,則此點取自正五邊形A2B2C2D2E2內部的概率為()

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有20名學生參加某次考試,成績(單位:分)的頻率分布直方圖如圖所示:

(Ⅰ)求頻率分布直方圖中的值;

(Ⅱ)分別求出成績落在中的學生人數;

(Ⅲ)從成績在的學生中任選2人,求所選學生的成績都落在中的概率

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程;

(2)設點的坐標為,若點是曲線截直線所得線段的中點,求的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校從參加高二年級期末考試的學生中抽出一些學生,并統(tǒng)計了他們的數學成績(成績均為整數且滿分為100分),所得數據整理后,列出了如下頻率分布表.

分組

頻數

頻率

[40,50

A

0.04

[50,60

4

0.08

[60,70

20

0.40

[70,80

15

0.30

[80,90

7

B

[90100]

2

0.04

合計

C

1

1)在給出的樣本頻率分布表中,求A,B,C的值;

2)補全頻率分布直方圖,并利用它估計全體高二年級學生期末數學成績的眾數、中位數;

3)現從分數在[8090),[90,100]9名同學中隨機抽取兩名同學,求被抽取的兩名學生分數均不低于90分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等級如表:

質量指標值m

25≤m35

15≤m25或35≤m45

0m15或45≤m≤65

等級

一等品

二等品

三等品

某企業(yè)從生產的這種產品中抽取100件產品作為樣本,檢測其質量指標值,得到如圖所示的頻率分布直方圖.(同一組數據用該區(qū)間的中點值作代表):

1)根據以上抽樣調查數據,能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品82%”的規(guī)定?

2)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值X近似滿足XN31,122),則“質量提升月”活動后的質量指標值的均值比活動前大約提升或降低多少?

3)若企業(yè)每件一等品售價180元,每件二等品售價150元,每件三等品售價120元,以樣本中的頻率代替相應概率,現有一名顧客隨機購買兩件產品,設其支付的費用為X(單位:元),求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是離心率為的橢圓的左、右頂點,是該橢圓的左、右焦點,,是直線上兩個動點,連接,它們分別與橢圓交于點,兩點,且線段恰好過橢圓的左焦點.當時,點恰為線段的中點.

(1)求橢圓的方程;

(Ⅱ)判斷以為直徑的圓與直線位置關系,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數方程;

(2)已知為曲線上的動點, 兩點的極坐標分別為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C過點A(2,6),且與直線l1: x+y10=0相切于點B(6,4).

(1)求圓C的方程;

(2)過點P(6,24)的直線l2與圓C交于M,N兩點,若△CMN為直角三角形,求直線l2的斜率;

(3)在直線l3: y=x2上是否存在一點Q,過點Q向圓C引兩切線,切點為E,F, 使△QEF為正三角形,若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案