設(shè)α,β為不重合的平面,m,n為不重合的直線,則下列命題正確的是(      )
A.若mα,nβ,m∥n,則α∥β
B.若n⊥α,n⊥β,m⊥β,則m⊥α
C.若m∥α,n∥β,m⊥n,則α⊥β
D.若α⊥β,n⊥β,m⊥n,則m⊥α
B  

試題分析:因為n⊥α,n⊥β,所以α∥β,又m⊥β,所以m⊥α,故選B。
點評:典型題,立體幾何中的平行關(guān)系、垂直關(guān)系,是高考重點考查的內(nèi)容,考查的形式一般是小題、大題均有。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,則異面直線AB1和BM所成的角的大小是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(1)線段的中點為,線段的中點為,求證:;
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知點B在以AC為直徑的圓上,SA⊥面ABCAESBE,AFSCF.

(I)證明:SCEF;
(II)若求三棱錐SAEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)如圖,在三棱錐S—ABC中,是邊長為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分別為AB、SB的中點。

⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點B到平面CMN的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點的等腰直角三角形,底面為直角梯形,,,,上一點,且.

(Ⅰ)求證;
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)如圖:AD=2,AB=4的長方形所在平面與正所在平面互相垂直,分別為的中點.

(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在三棱柱中,底面是正三角形,側(cè)棱底面,點是側(cè)面 的中心,若,則直線與平面所成角的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,直線(   )
A.異面且垂直B.異面但不垂直
C.相交且垂直D.相交但不垂直

查看答案和解析>>

同步練習(xí)冊答案