若關(guān)于x的方程sin2x-2
3
cos2x+m+
3
-1=0
在區(qū)間[0,
π
2
]
上有兩個(gè)不同的解,則實(shí)數(shù)m的取值范圍是(  )
A、(-1,1-
3
]
B、(0,1-
3
]
C、(-1,2
3
]
D、(0,1+
3
]
分析:這種題目首先要分離參數(shù),把m表示出來,整理關(guān)于三角函數(shù)的解析式,根據(jù)余弦曲線的特點(diǎn)看出若有兩個(gè)交點(diǎn)時(shí),m應(yīng)該在的區(qū)間.
解答:解:∵關(guān)于x的方程sin2x-2
3
cos2x+m+
3
-1=0
在區(qū)間[0,
π
2
]
上有兩個(gè)不同的解,
∴m=2
3
cos2x
-sin2x+1-
3

=
3
cos2x-sin2x+1
=2cos(2x+
π
6
)+1
∵在區(qū)間[0,
π
2
]
上有兩個(gè)不同的解,
只要寫出函數(shù)的值域,當(dāng)x∈[0,
π
2
]
時(shí),
2x+
π
6
∈[
π
6
,
6
]
根據(jù)余弦函數(shù)的圖象可以知道函數(shù)在這個(gè)區(qū)間上,若是直線y=m與曲線有兩個(gè)交點(diǎn),
則m∈(-1,1-
3
]
,
故選A.
點(diǎn)評:本題考查函數(shù)的定義域和值域,本題解題的關(guān)鍵是分離參數(shù),把m看成是函數(shù),求函數(shù)的值域即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),
q
=(1,0),<
n
,
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程4x2+5x+k=0的兩根為sinθ,cosθ,請寫出一個(gè)以tanθ,cotθ為兩根的一元二次方程:
9x2-32x+9=0(不唯一)
9x2-32x+9=0(不唯一)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量數(shù)學(xué)公式=(1,1),數(shù)學(xué)公式=(1,0),<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式數(shù)學(xué)公式=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+數(shù)學(xué)公式 )=數(shù)學(xué)公式 在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量數(shù)學(xué)公式=(cosA,2cos2 數(shù)學(xué)公式),試求|數(shù)學(xué)公式|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
m
=(1,1),
q
=(1,0),<
n
,
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省宜春市上高二中高二(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量=(1,1),=(1,0),<,>==-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+ )= 在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量=(cosA,2cos2 ),試求||的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案