(本題滿分14分)
已知動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)若是軌跡的動弦,且, 分別以、為切點作軌跡的切線,設(shè)兩切線交點為,證明:.
解:(1)依題意,圓心的軌跡是以為焦點,為準(zhǔn)線的拋物線上……3分
因為拋物線焦點到準(zhǔn)線距離等于4, 所以圓心的軌跡是………………6分
(2) ………………8分
,     ………11分
拋物線方程為所以過拋物線上A、B兩點的切線斜率分別是
, 。                                   ………12分
                           ………13分
所以,                                           ………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.今有一個水平放置的橢圓形臺球盤,點A、B是它的焦點,長軸長為2a,焦距為2c,靜放在點A的小球(小球的半徑忽略不計)從點A沿直線出發(fā),經(jīng)橢圓壁反射后第一次回到點A時,小球經(jīng)過的路程是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
在平面直角坐標(biāo)系xoy中,給定三點,點P到直線BC的距離是該點到直線AB,AC距離的等比中項。
(Ⅰ)求點P的軌跡方程;
(Ⅱ)若直線L經(jīng)過的內(nèi)心(設(shè)為D),且與P點的軌跡恰好有3個公共點,求L的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)已知點,直線為平面上的動點,過點作直線的垂線,垂足為點,且.
(1)求動點的軌跡的方程;          
(2)軌跡上是否存在一點使得過的切線與直線平行?若存在,求出的方程,并求出它與的距離;若不存在,請說明理由.      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

:已知橢圓的左右焦點為,拋物線C:以F2為焦點且與橢圓相交于點M,直線F1M與拋物線C相切。
(Ⅰ)求拋物線C的方程和點M的坐標(biāo);
(Ⅱ)過F2作拋物線C的兩條互相垂直的弦AB、DE,設(shè)弦AB、DE的中點分別為F、N,求證直線FN恒過定點;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)分別是橢圓的左、右焦點.若點在橢圓上,且,則                                                            
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二面角的平面角為為垂足,PA =5,PB=4,點A、B到棱l的距離分別為x,y當(dāng)θ變化時,點(x,y)的軌跡是下列圖形中的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不論取何值,方程所表示的曲線一定不是(   )
A 拋物線       B 雙曲線      C 圓      D 直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為拋物線的焦點,為此拋物線上的點,且使的值最小,則點的坐標(biāo)為    ******             .

查看答案和解析>>

同步練習(xí)冊答案