已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.
本小題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、解不等式等基礎(chǔ)知識,考查運(yùn)算能力、綜合分析和解決問題的能力.滿分12分. (Ⅰ)解:,由導(dǎo)數(shù)的幾何意義得,于是. 由切點(diǎn)在直線上可得,解得. 所以函數(shù)的解析式為. (Ⅱ)解:. 當(dāng)時(shí),顯然().這時(shí)在,上內(nèi)是增函數(shù). 當(dāng)時(shí),令,解得. 當(dāng)變化時(shí),,的變化情況如下表: 所以在,內(nèi)是增函數(shù),在,內(nèi)是減函數(shù). (Ⅲ)解:由(Ⅱ)知,在上的最大值為與的較大者,對于任意的,不等式在上恒成立,當(dāng)且僅當(dāng),即,對任意的成立. 從而得,所以滿足條件的的取值范圍是. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)(其中A、B、是實(shí)數(shù),且)的最小正周期是2,且當(dāng)時(shí),取得最大值2;
(1)、求函數(shù)的表達(dá)式;
(2)、在閉區(qū)間上是否存在的對稱軸?如果存在,求出其對稱軸的方程,
若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市臨川二中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年《龍門亮劍》高三數(shù)學(xué)(理科)一輪復(fù)習(xí):第2章第10節(jié)(人教AB通用)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知函數(shù)(其中a,b為常數(shù)且)的反函數(shù)的圖象經(jīng)過點(diǎn)A(4,1)和B(16,3)。
(1)求a,b的值;
(2)若不等式在上恒成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com