已知圓O的半徑為R(R為常數(shù)),它的內(nèi)接三角形ABC滿足2R(sin2A-sin2C)=成立,其中a,b,c分別為∠A,∠B,∠C的對(duì)邊,求三角形ABC面積S的最大值.

答案:
解析:

  解:由,

  

  由正弦定理得代入上式

  ,由余弦定理

   6分

  所以

 。

  當(dāng)且僅當(dāng)時(shí), 12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的半徑為R,它的內(nèi)接△ABC中,2R(sin2A-sin2C)=(
2
a-b)sinB
成立,求三角形ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O的半徑為R,AB是圓O的直徑,D是AB延長線上一點(diǎn),DC是圓O的切線,C是切點(diǎn),連接AC,若∠CAB=30°,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知圓O的半徑為R,若A,B是其圓周上的兩個(gè)三等分點(diǎn),則
OA
AB
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的半徑為R,圓內(nèi)一定點(diǎn)M且|MO|=
R
2
,一直線過點(diǎn)M且與該圓交于A,B 兩點(diǎn),則△OAB面積的最大值為
3
R2
4
3
R2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的半徑為R,A、B是其圓周上的兩個(gè)三等分點(diǎn),則
OA
OB
的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案