下列說(shuō)法正確的是(  )
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、命題“若x=y,則sinx=siny”的逆否命題為真命題
C、命題“a、b都是有理數(shù)”的否定是“a、b都不是有理數(shù)”
D、“x=-1”是“x2-5x-6=0”的必要不充分條件
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:本題考查四種命題和充要條件的知識(shí),將命題寫(xiě)出相應(yīng)形式,判斷真假;D中充要條件,將、“x2-5x-6=0”?“x=-1,或x=6”再判斷.
解答: 解:A、命題“若x2=1,則x=1”的否命題為:“若x21,則x≠1”,A錯(cuò)誤;
B、命題“若x=y,則sinx=siny”的逆否命題為“若sinx≠siny,則x≠y”,為真命題,B正確;
C、命題“a、b都是有理數(shù)”的否定是“a、b不都是有理數(shù)”,C錯(cuò)誤;
D、“x2-5x-6=0”?“x=-1,或x=6”,“x=-1”是“x2-5x-6=0”的充分不必要條件,D錯(cuò)誤;
故選;B.
點(diǎn)評(píng):要注意否命題和命題的否定的區(qū)分,命題的否定是對(duì)命題整體的否定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
①設(shè)A、B為兩個(gè)定點(diǎn),k為正常數(shù),|
PA
|+|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為橢圓;
②拋物線y=-
1
2
x2的焦點(diǎn)坐標(biāo)是(-
1
8
,0);
③“若q≤1,則x2+2x+q=0有實(shí)根”的逆否命題;
④若點(diǎn)P到直線x=-1的距離比它到點(diǎn)(2,0)的距離小1,則點(diǎn)P的軌跡為拋物線.
其中正確命題為( 。
A、①③B、②④C、③④D、①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的焦點(diǎn)是F1(-1,0),F(xiàn)2(1,0),P為橢圓上一點(diǎn),且|F1F2|是|PF1|和|PF2|的等差中項(xiàng).若點(diǎn)P在第三象限,且∠PF1F2=120°,則sin∠F1PF2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c∈R+,a+b+c=1求證a3b+b3c+c3a≥abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的f(x)滿足f(a)f(b)=f(a+b),(a,b∈R),且f(
1
2
)=
2
,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記f(P)為雙曲線 
x2
a2
-
y2
b2
=1(a>0,b>0)上一點(diǎn)P到它的兩條漸近線的距離之和;當(dāng)P在雙曲線上移動(dòng)時(shí),總有f(P)≥b.則雙曲線的離心率的取值范圍是(  )
A、(1,
5
4
]
B、(1,
5
3
]
C、(1,2]
D、(1,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2x+3y=12,利用柯西不等式求x2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,|BC|=24,AC,BA邊上的兩條中線之和為39.若以BC邊為x軸,BC中點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.求:△ABC重心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
,
n
是空間兩個(gè)單位向量,它們的夾角為60°,設(shè)向量
a
=2
m
+
n
,
b
=-3
m
+2
n
,則向量
a
與向量
b
的夾角為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案