12.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{24}}$=1(a>0,b>0)的左、右焦點,過F1的直線l與雙曲線的左右兩支分別交于點B,A兩點.若△ABF2為等邊三角形,則△BF1F2的面積為(  )
A.8B.8$\sqrt{2}$C.8$\sqrt{3}$D.16

分析 由雙曲線的定義,可得F1A-F2A=F1A-AB=F1B=2a,BF2-BF1=2a,BF2=4a,F(xiàn)1F2=2c,再在△F1BF2中應(yīng)用余弦定理得,a,c的關(guān)系,即可求出△BF1F2的面積.

解答 解:因為△ABF2為等邊三角形,不妨設(shè)AB=BF2=AF2=m,
A為雙曲線上一點,F(xiàn)1A-F2A=F1A-AB=F1B=2a,
B為雙曲線上一點,則BF2-BF1=2a,BF2=4a,F(xiàn)1F2=2c,
在△F1BF2中應(yīng)用余弦定理得:4c2=4a2+16a2-2•2a•4a•cos120°,
得c2=7a2,
在雙曲線中:c2=a2+b2,b2=24
∴a2=4
∴△BF1F2的面積為$\frac{1}{2}•2a•4a•\frac{\sqrt{3}}{2}$=$2\sqrt{3}{a}^{2}$=2$\sqrt{3}$×4=8$\sqrt{3}$.
故選:C.

點評 本題給出經(jīng)過雙曲線左焦點的直線被雙曲線截得弦AB與右焦點構(gòu)成等邊三角形,求三角形的面積,著重考查了雙曲線的定義和簡單幾何性質(zhì)等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$的圖象關(guān)于直線x=φ對稱,則x=φ可以為( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式-2x(x-3)(3x+1)>0的解集為(-∞,-$\frac{1}{3}$)∪(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給定命題p:x>4,q:|x-1|>2,則¬p是¬q的必要不充分條件(備注:從充要,充分不必要,必要不充分中選擇其一作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在區(qū)間[-1,2]上任取一個數(shù)x,則事件“($\frac{1}{2}$)x≥1”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a,b,c均為直線,α,β為平面,下面關(guān)于直線與平面關(guān)系的命題:
①任意給定一條直線與一個平面α,則平面α內(nèi)必存在與a垂直的直線;
②a∥β,β內(nèi)必存在與a相交的直線;
③α∥β,a?α,b?β,必存在與a,b都垂直的直線;
其中正確命題的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿足f(3)=1,f(-2)=3,當(dāng)x≠0時有x•f'(x)>0恒成立,若非負實數(shù)a、b滿足f(2a+b)≤1,f(-a-2b)≤3,則$\frac{b+2}{a+1}$的取值范圍為$[{\frac{4}{5},3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,若f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{x-1}$+1.
(1)證明:函數(shù)f(x)在(1,+∞)上遞減;
(2)記函數(shù)g(x)=f(x+1)-1,判斷函數(shù)g(x)的奇偶性,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案