已知x1和x2是函數(shù)f(x)=x2-ax+a-2=0的兩個零點.
(1)若x1和x2的值均小于2,求實數(shù)a的取值范圍;
(2)設m∈R,若不等式|m-5|≤|x1-x2|對任意實數(shù)a恒成立,求實數(shù)m的取值范圍.
考點:二次函數(shù)的性質,函數(shù)的零點
專題:函數(shù)的性質及應用
分析:(1)由二次函數(shù)性質和根與系數(shù)的關系,分析得不等式組,求得,(2)恒成立轉化為最值問題求解.
解答: 解:(1)函數(shù)f(x)=x2-ax+a-2=0為二次函數(shù),圖象開口向上,關于x=
a
2
,若x1和x2的值均小于2,則有
△>0
a
2
>2
f(2)>0
⇒a<2
,
(2)由題意,x1和x2是x2-ax+a-2=0的兩根,由韋達定理得x1+x2=a,x1•x2=a-2,
所以|x1-x2|=
(x1+x2)2-4x1x2
=
a2-4(a-2)
=
a2-4a+8
=
(a-2)2+4
,
當a=2時,|x1-x2|min=2,
若不等式|m-5|≤|x1-x2|對任意實數(shù)a恒成立,
∴|m-5|≤2,
∴3≤m≤7.
點評:本題考查二次函數(shù)的性質和恒成立問題的轉化,注意的是韋達定理和數(shù)形結合在其中的作用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

線段AD、CF為異面直線,點B、E為AC,DF中點,若AD=2,CF=4,AD,CF所成的角為60°,求BE長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=
5
2
cos(
π
2
x)+log
1
2
x,則函數(shù)f(x)的零點有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對的邊,若(a+b+c)(sinA+sinB-sinC)=asinB,又sinA=
3
2
,則sinB=( 。
A、
1
2
B、
3
2
C、
2
2
3
D、
2
6
-1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角α、β滿足sinα=
5
5
,cosβ=
3
10
10
,則cos(α-β)的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC=4,∠BAC=90°,D是BC的中點,若向量
AM
=
1
4
AB
+m•
AC
,且
AM
的終點M在△ACD的內部(不含邊界),則
AM
BM
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C,若BC=2BF,且AF=4,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sin(2ωx+
π
4
)-1相鄰兩對稱中心距離
π
21

(1)求ω的值;
(2)當x∈R,求f(x)值域,并求f(x)最大值時對應x的取值集合;
(3)當x∈[0,
π
2
]時,求f(x)值域;
(4)解不等式f(x)≤
3
-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊△ABC的中線AF與中位線DE相交于點G,將△AED沿DE折起到△A′ED的位置.
(1)證明:BD∥平面A′EF;
(2)當平面A′ED⊥平面BCED時,證明:直線A′E與 BD不垂直.

查看答案和解析>>

同步練習冊答案