18.集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求實(shí)數(shù)m的取值范圍.

分析 根據(jù)B⊆A,建立條件關(guān)系即可求實(shí)數(shù)m的取值范圍.

解答 解:集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},
∵B⊆A
①當(dāng)m+1>2m-1時(shí),即m<2時(shí),B=ϕ,滿足B⊆A;
②當(dāng)m+1≤2m-1,即m≥2時(shí),要使B⊆A成立,
則需$\left\{\begin{array}{l}m+1≥3\\ 2m-1≤5\end{array}\right.$,
解得:2≤m≤3.
綜上所述,實(shí)數(shù)m的取值范圍是(-∞,3].

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若數(shù)列…,a-2,a-1,a0,a1,a2,…滿足${a_n}=\frac{{{a_{n-1}}+{a_{n+1}}}}{3}({n∈Z})$,則稱{an}具有性質(zhì)A.
(Ⅰ)若數(shù)列{an}、{bn}具有性質(zhì)A,k為給定的整數(shù),c為給定的實(shí)數(shù).以下四個(gè)數(shù)列中哪些具有性質(zhì)A?請直接寫出結(jié)論.
①{-an};②{an+bn};③{an+k};④{can}.
(Ⅱ)若數(shù)列{an}具有性質(zhì)A,且滿足a0=0,a1=1.
(i)直接寫出a-n+an(n∈Z)的值;
(ii)判斷{an}的單調(diào)性,并證明你的結(jié)論.
(Ⅲ)若數(shù)列{an}具有性質(zhì)A,且滿足a-2004=a2015.求證:存在無窮多個(gè)整數(shù)對(l,m),滿足at=am(l≠m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.對某電子元件進(jìn)行壽命追蹤調(diào)查,情況如表.
壽命(h)100~200200~300300~400400~500500~600
個(gè)  數(shù)2030804030
(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)從頻率分布直方圖估計(jì)出電子元件壽命的眾數(shù)、中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)x∈(0,5]時(shí),函數(shù)f(x)=3x2-4x+c的值域?yàn)椋ā 。?table class="qanwser">A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓?jiān)┊?dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如表數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購金額(元)頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計(jì)1001.00
(1)先求出x,y,p,q的值,再將如圖3所示的頻率分布直方圖繪制完整;
(2)對這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
x網(wǎng)齡3年以上網(wǎng)齡不足3年合計(jì)
購物金額在2000元以上35
購物金額在2000元以下20
總計(jì)100
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)從這100名網(wǎng)購者中根據(jù)購物金額分層抽出20人給予返券獎(jiǎng)勵(lì),為進(jìn)一步激發(fā)購物熱情,在(2000,2500]和(2500,3000]兩組所抽出的8人中再隨機(jī)抽取2人各獎(jiǎng)勵(lì)1000元現(xiàn)金,求(2000,2500]組獲得現(xiàn)金將的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義域?yàn)镽的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=x2-3.
(1)求函數(shù)f(x)在R上的解析式;
(2)求不等式f(x)>2x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{-{x}^{2}+4x}$的單調(diào)增區(qū)間為( 。
A.[0,2]B.(-∞,2]C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.夏天到了,某中學(xué)餐飲中心為了解學(xué)生對冷凍降暑食品的飲食習(xí)慣,在全校二年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡冷凍不喜歡冷凍合計(jì)
女學(xué)生602080
男學(xué)生101020
合計(jì)7030100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“女學(xué)生和男學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名高二(15)班的學(xué)生,其中2名不喜歡冷凍降暑食品.現(xiàn)在從這5名學(xué)生中隨機(jī)抽取2人,求至多有1人喜歡冷凍降暑食品的概率.
P(χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(Ⅰ)過點(diǎn)(3,-1),且離心率$e=\sqrt{2}$;
(Ⅱ)一條漸近線為$y=-\frac{3}{2}x$,頂點(diǎn)間距離為6.

查看答案和解析>>

同步練習(xí)冊答案