【題目】小王參加一次比賽,比賽共設三關,第一、二關各有兩個必答題,如果每關兩個問題都答對,可進入下一關,第三關有三個問題,只要答對其中兩個問題,則闖關成功,每過一關可一次性獲得價值分別為1000元,3000元,6000元的獎品(不重復得獎),小王對三關中每個問題回答正確的概率依次為,,且每個問題回答正確與否相互獨立.

1)求小王過第一關但未過第二關的概率;

2)用表示小王所獲得獲品的價值,寫出的概率分布列,并求的數(shù)學期望.

【答案】1;(2)分布列見詳解,

【解析】

1)小王過第一關但未過第二關,包括小王第一關兩道題都答對,第二關第一道題答錯,或者小王第一關兩道題都答對,第二關第一道題答對,第二道題答錯,據(jù)此計算概率;

(2)根據(jù)題意,分別寫出可取的值,再計算每個可取值對應的概率,求得分布列即可.

1)設小王過第一關但未過第二關的概率為,

則容易知.

2的取值為0,1000,3000,6000,

,

,,

,

的概率分布列為

0

1000

3000

6000

的數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,是正三角形,,的中點.

(1)證明:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.

(Ⅰ)求動點的軌跡方程;

(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 的中點。

1)證明: 平面;

2)設 ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最大值;

2)若函數(shù)有相同極值點.

求實數(shù)的值;

若對于為自然對數(shù)的底數(shù)),不等式恒成立,

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在上的函數(shù)滿足任意都有,,,,的大小關系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的極值點;

2)設函數(shù)有兩個零點,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖放置的邊長為1的正方形 沿 軸滾動(向右為順時針,向左為逆時針).設頂點 的軌跡方程是,則關于的最小正周期在其兩個相鄰零點間的圖像與x軸所圍區(qū)域的面積S的正確結論是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案