已知兩點(diǎn),點(diǎn)是圓上任意一點(diǎn),則面積的最小值是

[  ]

A.

B.

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:(x+
3
2
x)2+y2=
9r2
4
,點(diǎn)N(3r,0),其中r>0,設(shè)P是圓上任一點(diǎn),線(xiàn)段PN上的點(diǎn)Q滿(mǎn)足
PQ
QN
=
1
2

(1)求點(diǎn)Q的軌跡方程;
(2)若點(diǎn)Q對(duì)應(yīng)曲線(xiàn)與x軸兩交點(diǎn)為A,B,點(diǎn)R是該曲線(xiàn)上一動(dòng)點(diǎn),曲線(xiàn)在R點(diǎn)處的切線(xiàn)與在A,B兩點(diǎn)處的切線(xiàn)分別交于C,D兩點(diǎn),求AD與BC交點(diǎn)S的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為2
2
,過(guò)點(diǎn)M(0,-
1
3
)與x軸不垂直的直線(xiàn)l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)已知圓C的方程為x2+y2+2x-7=0,圓心C關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)為A,P是圓上任一點(diǎn),線(xiàn)段AP的垂直平分線(xiàn)l交PC于點(diǎn)Q.
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡L的方程;
(2)過(guò)點(diǎn)B(1,
12
)能否作出直線(xiàn)l2,使l2與軌跡L交于M、N兩點(diǎn),且點(diǎn)B是線(xiàn)段MN的中點(diǎn),若這樣的直線(xiàn)l2存在,請(qǐng)求出它的方程和M、N兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(-1,0)、B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任一點(diǎn),則△PAB面積的最大值是(    )

A.2               B.2+                C.                  D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖北新洲、紅安、麻城一中高三上學(xué)期期末考文科數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿(mǎn)分14分)

已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為,過(guò)點(diǎn)M(0,)與x軸不垂直的直線(xiàn)交橢圓于P、Q兩點(diǎn).

(1)求橢圓的方程;

(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案