13.若拋物線C:x=2py2過(guò)點(diǎn)(2,5),則拋物線C的準(zhǔn)線方程為x=-$\frac{25}{8}$.

分析 求出拋物線的標(biāo)準(zhǔn)方程,然后求解拋物線的準(zhǔn)線方程.

解答 解:拋物線C:x=2py2過(guò)點(diǎn)(2,5),
可得:2=2p×25,
解得p=$\frac{1}{25}$,
拋物線的標(biāo)準(zhǔn)方程為:y2=$\frac{25}{2}$x,
拋物線C的準(zhǔn)線方程為:x=-$\frac{25}{8}$.
給答案為:x=-$\frac{25}{8}$.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.曲線y=x3+2x在點(diǎn)P(1,3)處的切線方程是(  )
A.5x+y-8=0B.5x-y-2=0C.3x+y-6=0D.4x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=$\sqrt{tanx-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,$\frac{π}{2}}$)B.(0,$\frac{π}{4}}$)C.($\frac{π}{4}$,$\frac{π}{2}}$)D.[kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)+cos(ωx+φ)(0<φ<π,ω>0)的圖象關(guān)于y軸對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|x≥4},B={x|y=ln(2x-1)},則(∁RA)∩B=(  )
A.[4,+∞)B.[0,$\frac{1}{2}}$]C.($\frac{1}{2}$,4)D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={-2,0,2},B={x|x=|a+2|,a∈A},集合A∩B=(  )
A.{0}B.{2}C.{0,2}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓E:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1,過(guò)焦點(diǎn)(0,2)的直線l與橢圓交于M,N兩點(diǎn),點(diǎn)A坐標(biāo)為(0,$\frac{9}{2}$),$\overrightarrow{AN}$•$\overrightarrow{MN}$=0,則直線l斜率為( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\sqrt{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.投籃測(cè)試中,每人投3次,至少連續(xù)投中2個(gè)才能通過(guò)測(cè)試,若某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過(guò)測(cè)試的概率為(  )
A.0.648B.0.504C.0.36D.0.312

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2,求m的值,;
(2)若l1∥l2,且它們的距離為$\sqrt{5}$,求m、n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案