10.已知向量$\overrightarrow a=(x,y)$(x,y∈R),$\overrightarrow b=(1,2)$,若x2+y2=1,則$|\overrightarrow a-\overrightarrow b|$的最大值為$\sqrt{5}$+1.

分析 利用$|\overrightarrow a-\overrightarrow b|$≤$|\overrightarrow{OP}|$+r即可得出.

解答 解:設(shè)O(0,0),P(1,2).
$|\overrightarrow a-\overrightarrow b|$=$\sqrt{(x-1)^{2}+(y-2)^{2}}$≤$|\overrightarrow{OP}|$+r=$\sqrt{{1}^{2}+{2}^{2}}$+1=$\sqrt{5}$+1.
∴$|\overrightarrow a-\overrightarrow b|$的最大值為$\sqrt{5}$+1.
故答案為:$\sqrt{5}+1$.

點評 本題考查了向量的模的計算公式、點與圓的位置關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.用反證法證明命題“已知a、b、c為非零實數(shù),且a+b+c>0,ab+bc+ca>0,求證a、b、c中至少有二個為正數(shù)”時,要做的假設(shè)是(  )
A.a、b、c中至少有二個為負數(shù)B.a、b、c中至多有一個為負數(shù)
C.a、b、c中至多有二個為正數(shù)D.a、b、c中至多有二個為負數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)F為拋物線y2=12x的焦點(O為坐標原點),M(x,y)為拋物線上一點,若|MF|=5,則點M的橫坐標x的值是2,三角形OMF的面積是3$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,則tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-mx+m-1\;,\;x≥0\\ f({x+2})\;,\;x<0\end{array}\right.$.
(Ⅰ)當m=8時,求f(-4)的值;
(Ⅱ)當m=8且x∈[-8,8]時,求|f(x)|的最大值;
(Ⅲ)對任意的實數(shù)m∈[0,2],都存在一個最大的正數(shù)K(m),使得當x∈[0,K(m)]時,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此時相應(yīng)的m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.關(guān)于直線l,m及平面α,β,下列命題中正確的是( 。
A.若l∥α,α∩β=m,則l∥mB.若l∥α,m∥α,則l∥m
C.若l⊥α,m∥α,則l⊥mD.若l∥α,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑,半徑長度為2,則該幾何體的表面積是( 。
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,則y-2x的最大值是( 。
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.空間四邊形ABCD中,E、F分別為AC、BD中點,若CD=2AB,EF⊥AB,則直線EF與CD所成的角的度數(shù)為30°.

查看答案和解析>>

同步練習冊答案