【題目】新能源汽車的春天來(lái)了!201835日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車車輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自201811日至20201231日,對(duì)購(gòu)置的新能源汽車免征車輛購(gòu)置稅.某人計(jì)劃于20185月購(gòu)買一輛某品牌新能源汽車,他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解了近五個(gè)月的實(shí)際銷量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份編號(hào)

1

2

3

4

5

銷量(萬(wàn)量)

0.5

0.6

1

1.4

1.7

1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌噷?shí)際銷量(萬(wàn)輛)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)20185月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量;

22018612日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠(yuǎn)里程)對(duì)購(gòu)車補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買新能源汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值區(qū)間(萬(wàn)元)

頻數(shù)

20

60

60

30

20

10

i)求這200位擬購(gòu)買新能源汽車的消費(fèi)者對(duì)補(bǔ)貼金額的心理預(yù)期值的方差及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替,估計(jì)值精確到0.1);

ii)將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買新能源汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取的3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:①回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:;②.

【答案】(1) ,2萬(wàn)輛. (2) i=1.7,中位數(shù)3.3萬(wàn)元.ii)分布列見(jiàn)解析,數(shù)學(xué)期望為1.8

【解析】

1)由題意利用最小二乘法能求出y關(guān)于t的線性回歸方程,并預(yù)測(cè)20185月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量.

2)(i)由題意能求出這200位擬購(gòu)買新能源汽車的消費(fèi)者對(duì)補(bǔ)貼金額的心里預(yù)期值的平均值和樣本方差s2及中位數(shù)的估計(jì)值.

ii)根據(jù)給定的頻數(shù)表可知,任意抽取1名擬購(gòu)買新能源汽車的消費(fèi)者,對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的概率為,由題意可知ξB3,),ξ的所有可能取值為0,1,23,由此能求出ξ的分布列及數(shù)學(xué)期望Eξ).

1)由表格數(shù)據(jù)可知,,

,

,

,

關(guān)于的線性回歸方程,

根據(jù)的含義,20185月時(shí),,代入可得(萬(wàn)輛),即20185月銷量的預(yù)測(cè)值為2萬(wàn)輛.

2)(i)由表中數(shù)據(jù)可知各組頻率依次為0.1,0.3,0.3,0.15,0.1,0.05,

平均值,

.

,

中位數(shù)在區(qū)間內(nèi),設(shè)中位數(shù)為,

,

解得,中位數(shù)萬(wàn)元.

ii)由(i)可知,心理預(yù)期值不低于3萬(wàn)元的概率為

,的可能取值為0,1,23.

,

,

的分布列為

0

1

2

3

0.064

0.288

0.432

0.216

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)若點(diǎn)是曲線上的動(dòng)點(diǎn),求到直線距離的最小值,并求出此時(shí)點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)若點(diǎn)、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn),且

1)求的取值范圍;

2)證明:隨著的增大而減。

3)證明:隨著的增大而減小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),記函數(shù)在區(qū)間的最大值為.最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面平面,直線平面,且

1)求證:DA平面

2)若,平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),,分別為橢圓的右下頂點(diǎn),且.

1)求橢圓的方程;

2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線,的斜率乘積為,且直線,分別交橢圓于點(diǎn),.

①若,關(guān)于軸對(duì)稱,求直線的斜率;

②若的面積分別為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)進(jìn)行疾病普查,為此要檢驗(yàn)每一人的血液,如果當(dāng)?shù)赜?/span>人,若逐個(gè)檢驗(yàn)就需要檢驗(yàn)次,為了減少檢驗(yàn)的工作量,我們把受檢驗(yàn)者分組,假設(shè)每組有個(gè)人,把這個(gè)個(gè)人的血液混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這個(gè)人的血液全為陰性,因而這個(gè)人只要檢驗(yàn)一次就夠了,如果為陽(yáng)性,為了明確這個(gè)個(gè)人中究竟是哪幾個(gè)人為陽(yáng)性,就要對(duì)這個(gè)人再逐個(gè)進(jìn)行檢驗(yàn),這時(shí)個(gè)人的檢驗(yàn)次數(shù)為次.假設(shè)在接受檢驗(yàn)的人群中,每個(gè)人的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性是獨(dú)立的,且每個(gè)人是陽(yáng)性結(jié)果的概率為.

(Ⅰ)為熟悉檢驗(yàn)流程,先對(duì)3個(gè)人進(jìn)行逐個(gè)檢驗(yàn),若,求3人中恰好有1人檢測(cè)結(jié)果為陽(yáng)性的概率;

(Ⅱ)設(shè)個(gè)人一組混合檢驗(yàn)時(shí)每個(gè)人的血需要檢驗(yàn)的次數(shù).

①當(dāng),時(shí),求的分布列;

②是運(yùn)用統(tǒng)計(jì)概率的相關(guān)知識(shí),求當(dāng)滿足什么關(guān)系時(shí),用分組的辦法能減少檢驗(yàn)次數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案