函數(shù)f(x)=(x2-2x-3)(x2-2x-5)的值域是( 。
A、(-∞,-1]
B、[-1,+∞)
C、[24,+∞)
D、(24,+∞)
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將原式變形為y=[(x-1)2-4][(x-1)2-6],在利用換元法轉(zhuǎn)化為二次函數(shù)在[0,+∞)的值域問題.
解答: 解:原函數(shù)可化為y=[(x-1)2-4][(x-1)2-6],
令t=(x-1)2≥0,則y=t2-10t+24=(t-5)2-1≥-1,且當(dāng)t=5時(shí)取等號(hào),
所以y≥-1.故函數(shù)的值域?yàn)閇-1,+∞).
故選B.
點(diǎn)評(píng):本題利用換元法將問題轉(zhuǎn)化為二次函數(shù)的值域問題求解是關(guān)鍵,要注意換元后中間量的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1-an=2,n∈N*,數(shù)列{an}的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn公式;
(2)求數(shù)列{
1
anan+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx-x
x

(Ⅰ)求點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)m>0,求f(x)在[m,2m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若[-1,1]⊆{x||x2-tx+t|≤1},則實(shí)數(shù)t的取值范圍是( 。
A、[-1,0]
B、[2-2
2
,0]
C、(-∞,-2]
D、[2-2
2
,2+2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2ex-1,x<2
log3(x2-a),x≥2
,若f(f(1))=2,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x=2,條件q:(x-2)(x-3)=0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+abx+a+2b.且a、b均為非負(fù)數(shù),若f(0)=4,則f(1)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
a2-1
•(ax-a-x)(a>0且a≠1),討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半徑為30cm的圓形(O為圓心)鐵皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A,C在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)OB與矩形材料的邊OA的夾角為θ,圓柱的體積為Vcm3
(Ⅰ)求V關(guān)于θ的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)求圓柱形罐子體積V的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案