【題目】已知為圓上一點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),點(diǎn)滿足
(1)求動點(diǎn)的軌跡方程;
(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.
【答案】(1) (2)
【解析】
(1)設(shè)出A、P點(diǎn)坐標(biāo),用P點(diǎn)坐標(biāo)表示A點(diǎn)坐標(biāo),然后代入圓方程,從而求出P點(diǎn)的軌跡;
(2)設(shè)出P點(diǎn)坐標(biāo),根據(jù)斜率存在與否進(jìn)行分類討論,當(dāng)斜率不存在時(shí),求出面積的值,當(dāng)斜率存在時(shí),利用點(diǎn)P坐標(biāo)表示的面積,減元后再利用函數(shù)單調(diào)性求出最值,最后總結(jié)出最值.
解:(1) 設(shè),
由題意得:,
由,可得點(diǎn)是的中點(diǎn),
故,
所以,
又因?yàn)辄c(diǎn)在圓上,
所以得,
故動點(diǎn)的軌跡方程為.
(2)設(shè),則,且,
當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),
因?yàn)?/span>,
即
故,
,
,
①,
代入①
設(shè)
因?yàn)?/span>恒成立,
在上是減函數(shù),
當(dāng)時(shí)有最小值,即,
綜上:的最小值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用 ②子女教育費(fèi)用 ③繼續(xù)教育費(fèi)用 ④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月共扣除2000元 ②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過3000元的部分 | 3% |
2 | 超過3000元至12000元的部分 | 10% |
3 | 超過12000元至25000元的部分 | 20% |
現(xiàn)有李某月收入18000元,膝下有兩名子女,需要贍養(yǎng)老人,(除此之外,無其它專項(xiàng)附加扣除,專項(xiàng)附加扣除均按標(biāo)準(zhǔn)的100%扣除),則李某月應(yīng)繳納的個(gè)稅金額為( )
A.590元B.690元C.790元D.890元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.“”是“”的充分不必要條件
B.命題“若則”的逆否命題為真
C.命題“,”的否定是“,”
D.若命題p為真命題,命題q為假命題,則命題“”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)根據(jù)不同取值,討論函數(shù)的奇偶性;
(2)若,對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若已知,. 設(shè)函數(shù),,存在、,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若是的一個(gè)極值點(diǎn),且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若對于任意的(為自然對數(shù)的底數(shù)),恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com