4.在銳角△ABC中,設(shè)角A,B,C所對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大;
(2)若a=3,求△ABC的周長的最大值.

分析 (1)利用平面向量數(shù)量積的坐標(biāo)運算,整理可得b2+c2-a2=-bc,利用余弦定理可求cosA=-$\frac{1}{2}$,結(jié)合范圍A∈(0,π),可得A的值.
(2)由(1)及a=3,利用余弦定理,基本不等式可求得(b+c)2≤12進而可求△ABC的周長的最大值.

解答 (本題滿分為12分)
解:(1)∵向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0,
∴(b+c)2-a2-bc=0,
∴b2+c2-a2=-bc,…2分
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,…4分
又A∈(0,π),所以$A=\frac{2π}{3}$…(6分)
(2)由(1)及a=3,得${a^2}={b^2}+{c^2}+bc={({b+c})^2}-bc≥{({b+c})^2}-{({\frac{b+c}{2}})^2}=\frac{3}{4}{({b+c})^2}$,
所以(b+c)2≤12,…(9分)
所以$b+c≤2\sqrt{3},a+b+c≤3+2\sqrt{3}$,…(11分)
故△ABC的周長的最大值$3+2\sqrt{3}$…(12分)

點評 本題主要考查了平面向量數(shù)量積的坐標(biāo)運算,余弦定理,基本不等式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-ax在x=2處的切線l與直線x+2y-3=0平行.記函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求實數(shù)a的值;
(2)令h(x)=g(x)+2x,若h(x)存在單調(diào)遞減區(qū)間,求實數(shù)b的取值范圍;
(3)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點,若b≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.給出下列判斷:
①f(x)=$\sqrt{x-2}+\sqrt{1-x}$有意義;
②已知集合A={x|mx=1},B={1,2},且A⊆B,則實數(shù)m=1或m=$\frac{1}{2}$;
③函數(shù)y=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},\;\;x<0\end{array}$的圖象是拋物線;
④y=f(x)在R是增函數(shù),則y=f(-x)在R是減函數(shù).
其中正確的是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.為了得到函數(shù)y=$\sqrt{2}$cos3x的圖象,可以將函數(shù)y=sin3x+cos3x的圖象向左平移$\frac{π}{12}$個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(3)的實數(shù)x的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項和為Sn,且3a3=a6+4若S5<10則a2的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,a1=1,且3Sn=an+1-1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)等差數(shù)列{bn}的前n項和為Tn,a2=b2,T4=1+S3,求$\frac{2{T}_{n}+48}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的體積為( 。
A.$\frac{243π}{16}$B.$\frac{81π}{16}$C.$\frac{81π}{4}$D.$\frac{27π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知扇形OAB的面積為1,周長為4,則弦AB的長度為( 。
A.2B.$\frac{2}{sin1}$C.2sin1D.sin2

查看答案和解析>>

同步練習(xí)冊答案