16.曲線(xiàn)f(x)=x3-$\frac{1}{x}$(x>0)上一動(dòng)點(diǎn)P(x0,f(x0))處的切線(xiàn)斜率的最小值為(  )
A.$\sqrt{3}$B.3C.2$\sqrt{3}$D.6

分析 先求出曲線(xiàn)對(duì)應(yīng)函數(shù)的導(dǎo)數(shù),由基本不等式求出導(dǎo)數(shù)的最小值,即得到曲線(xiàn)斜率的最小值.

解答 解:f(x)=x3-$\frac{1}{x}$(x>0)的導(dǎo)數(shù)f′(x)=3x2+$\frac{1}{{x}^{2}}$,
∴在該曲線(xiàn)上點(diǎn)(x0,f(x0))處切線(xiàn)斜率 k=3x02+$\frac{1}{{{x}_{0}}^{2}}$,
由函數(shù)的定義域知 x0>0,
∴k≥2$\sqrt{3{{x}_{0}}^{2}•\frac{1}{{{x}_{0}}^{2}}}$=2$\sqrt{3}$,當(dāng)且僅當(dāng)3x02=$\frac{1}{{{x}_{0}}^{2}}$,即x02=$\frac{\sqrt{3}}{3}$ 時(shí),等號(hào)成立.
∴k的最小值為2$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查曲線(xiàn)的切線(xiàn)斜率與對(duì)應(yīng)的函數(shù)的導(dǎo)數(shù)的關(guān)系,以及基本不等式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.將二進(jìn)制數(shù)101101(2)化為十進(jìn)制數(shù),結(jié)果為45;再將結(jié)果化為8進(jìn)制數(shù),結(jié)果為55(8),三個(gè)數(shù)390,455,546的最大公約數(shù)是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,側(cè)面PAB⊥底面ABCD,PA=AD=AB=1,BC=2.
(1)證明:平面PBC⊥平面PDC;
(2)若∠PAB=120°,求點(diǎn)B到直線(xiàn)PC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了了解小學(xué)生的體能情況,抽取了某校一個(gè)年級(jí)的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將取得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖).已知圖中從左到右前三個(gè)小組頻率分別為0.3,0.4,0.15,0.1,第一小組的頻數(shù)為15.

(1)求第五小組的頻率;
(2)參加這次測(cè)試的學(xué)生有多少人;
(3)求該校一個(gè)年級(jí)學(xué)生一分鐘跳繩次數(shù)的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若a3=b3,a4=b4,且$\frac{{{S_5}-{S_3}}}{{{T_4}-{T_2}}}$=5,$\frac{{{a_5}+{a_3}}}{{{b_5}+{b_3}}}$=( 。
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.有2個(gè)人在一座6層大樓的底層進(jìn)入電梯,假設(shè)每一個(gè)人從第二層開(kāi)始在每次離開(kāi)電梯是等可能的,求2人在不同層離開(kāi)電梯的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓M與圓O:x2+y2=3+2$\sqrt{2}$相內(nèi)切,且和x軸的正半軸,y軸的正半軸都相切,則圓M的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)f(x)=$\left\{{\begin{array}{l}{{{({\frac{1}{2}})}^{x-\frac{3}{2}}},x≤\frac{1}{2}}\\{{{log}_a}x,x>\frac{1}{2}}\end{array}$(a>0,且a≠1)的值域是R,則實(shí)數(shù)a的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},則A∩B等于( 。
A.{1,2}B.{(1,2)}C.{(2,1)}D.{(x,y)|x=1或y=2}

查看答案和解析>>

同步練習(xí)冊(cè)答案