【題目】已知函數(shù), .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:(1)若直線與曲線相切,因直線過定點,若設(shè)切點則可得①,又, 上單調(diào)遞增,當且僅當時,①成立,這與矛盾,結(jié)論得證.

(2)可轉(zhuǎn)化為,令, , ,分類討論求的最小值即可.

試題解析: (1)的定義域為, ,直線過定點,若直線與曲線相切于點),則,即①,設(shè), ,則,所以上單調(diào)遞增,又,從而當且僅當時,①成立,這與矛盾.

所以, ,直線都不是曲線的切線;

(2),令,

,使成立,

.

(i)當時, , 上為減函數(shù),于是,由,滿足,所以符合題意;

(ii)當時,由的單調(diào)性知上為增函數(shù),所以,即.

①若,即,則,所以為增函數(shù),于是,不合題意;

②若,即,則由 的單調(diào)性知存在唯一,使,且當時, , 為減函數(shù);當時, , 為增函數(shù);

所以,由,這與矛盾,不合題意.

綜上可知, 的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , n∈N* , 已知a1=1,a2= ,a3= ,且當n≥2時,4Sn+2+5Sn=8Sn+1+Sn1
(1)求a4的值.
(2)證明:{an1 an}為等比數(shù)列;
(3)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)當m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且MN= ,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓為參數(shù)), 上的動點,且滿足為坐標原點),以原點為極點, 軸的正半軸為極軸建立坐標系,點的極坐標為.

(1)求線段的中點的軌跡的普通方程;

(2)利用橢圓的極坐標方程證明為定值,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+6y=0,則圓心P及半徑r分別為(
A.圓心P(1,3),半徑r=10
B.圓心P(1,3),半徑
C.圓心P(1,﹣3),半徑r=10
D.圓心P(1,﹣3),半徑

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是(
A.f(x)=|x|,
B. ,
C. ,g(x)=x+1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

(1)求橢圓的方程;

(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02﹣x0﹣1>0,則¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求實數(shù)a的值及f(x)的極值;
(Ⅱ)是否存在區(qū)間(t,t+ )(t>0),使函數(shù)f(x)在此區(qū)間上存在極值和零點?若存在,求實數(shù)t的取值范圍,若不存在,請說明理由;
(Ⅲ)如果對任意的 ,有|f(x1)﹣f(x2)|≥k| |,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案