(2012•寧德模擬)已知實(shí)數(shù)x,y滿足條件
y≥0
y≤x
2x+y-6≤0
,則z=x+2y的最大值為
6
6
分析:先根據(jù)約束條件畫出可行域,設(shè)z=x+2y,再利用z的幾何意義求最值,只需求出直線z=x+2y過(guò)可行域內(nèi)的點(diǎn)B時(shí),從而得到z值即可.
解答:解:先根據(jù)約束條件畫出可行域,設(shè)z=x+2y,
將最大值轉(zhuǎn)化為y軸上的截距,
y=x
2x+y-6=0
得B(2,2).
當(dāng)直線z=x+2y經(jīng)過(guò)點(diǎn)B( 2,2)時(shí),z最大,
數(shù)形結(jié)合,將點(diǎn)B的坐標(biāo)代入z=x+2y得
z最大值為:6,
故答案為:6.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是最常見(jiàn)的問(wèn)題,這類問(wèn)題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧德模擬)已知函數(shù)f(x)=2x+k•2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)k的值;
(2)若對(duì)任意的x∈[0,+∞)都有f(x)>2-x成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧德模擬)一空間幾何體的三視圖如圖所示,則該幾何體的體積為
2π+
3
2
2π+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧德模擬)已知△ABC的面積為
3
2
,AC=
3
,∠ABC=
π
3
,則△ABC的周長(zhǎng)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧德模擬)如圖所示,在矩形ABCD中,AB=3
5
,AD=6,BD是對(duì)角線,過(guò)A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點(diǎn)D到點(diǎn)P的位置.且PB=
41

(I)求證:PO⊥平面ABCE;
(n)求二面角E-AP-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧德模擬)若直線kx-y-2=0與曲線
1-(y-1)2
=x-1
有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案