13.已知函數(shù)f(x)=|x2-2x|,設(shè)關(guān)于x的方程f[f(x)]=a(a∈R)的實(shí)數(shù)根的個(gè)數(shù)為g(a),有下列五個(gè)命題:
①g(0)=4;
②g(1)=6;
③當(dāng)a<0時(shí),g(a)=0;
④當(dāng)0<a<1時(shí),g(a)=8;
⑤當(dāng)a>1時(shí),g(a)=3.
其中正確的有①③④(寫(xiě)出所有正確命題的序號(hào)).

分析 作出f(x)的圖象,結(jié)合選項(xiàng),逐個(gè)分析,即可得出結(jié)論.

解答 解:①a=0時(shí),f[f(x)]=0,∴f(x)=0或2,
∴g(0)=4,正確;
②a=1時(shí),f[f(x)]=1,由x2-2x=1,可得x=1±$\sqrt{2}$∴f(x)=1或1+$\sqrt{2}$,
∴g(1)=5,不正確;
③當(dāng)a<0時(shí),g(a)=0,正確;
④當(dāng)0<a<1時(shí),f(x)的取值有1個(gè)小于0,
1個(gè)在(0,1),1個(gè)在(1,2),1個(gè)在(2,3),
∴g(a)=8,正確;
⑤當(dāng)a>1時(shí),f(x)的取值有1個(gè)小于0,1個(gè)大于1,
∴g(a)=2.
故答案為①③④.

點(diǎn)評(píng) 本題考查命題真假判斷,考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確作出函數(shù)的圖象是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)f(x)中,滿足“對(duì)任意x1,x2∈(0,+∞) (x1≠x2),都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0”的是( 。
A.f(x)=$\frac{1}{x}$B.f(x)=(x-1)2C.f(x)=2xD.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線$\frac{y^2}{5}-\frac{x^2}{m}=1$的離心率e∈(1,2),若命題“p∨q為真,命題“p∧q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)A(1,0)和圓B:(x+1)2+y2=64,P是圓上任一點(diǎn),求線段AP的垂直平分線l與線段PB的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.海事救護(hù)船A在基地的北偏東60°,與基地相距$100\sqrt{3}$海里,漁船B被困海面,已知B距離基地100海里,而且在救護(hù)船A正西方,則漁船B與救護(hù)船A的距離是200海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,則$f(\frac{π}{3})$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.給出定義:若$m-\frac{1}{2}<x≤m+\frac{1}{2}$(m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m.下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)結(jié)論:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)?[0,\frac{1}{2}]$;
②函數(shù)y=f(x)的圖象關(guān)于直線$x=\frac{k}{2}(k∈Z)$對(duì)稱(chēng);
③函數(shù)y=f(x)在$[-\frac{1}{2},\frac{1}{2}]$上是增函數(shù);
④對(duì)任意實(shí)數(shù)x,都有f(-x)=f(x)
其中正確結(jié)論的序號(hào)是( 。
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(1+x)=f(1-x),且方程f(x)=2x有兩等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
(3)是否存在實(shí)數(shù)m、n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出m、n的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求不等式$\frac{x+1}{|x|-1}$>0的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案