【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,使得f(x)<2成立,求實數(shù)a的取值范圍.

【答案】
(1)解:若a=﹣1,f(x)≥3,

即為|x﹣1|+|x+1|≥3,

當x≤﹣1時,1﹣x﹣x﹣1≥3,即有x≤﹣ ;

當﹣1<x<1時,1﹣x+x+1=2≥3不成立;

當x≥1時,x﹣1+x+1=2x≥3,解得x≥

綜上可得,f(x)≥3的解集為(﹣∞,﹣ ]∪[ ,+∞)


(2)解:x∈R,使得f(x)<2成立,

即有2>f(x)min

由函數(shù)f(x)=|x﹣1|+|x﹣a|≥|x﹣1﹣x+a|=|a﹣1|,

當(x﹣1)(x﹣a)≤0時,取得最小值|a﹣1|,

則|a﹣1|<2,

即﹣2<a﹣1<2,

解得﹣1<a<3.

則實數(shù)a的取值范圍為(﹣1,3)


【解析】(1)由題意可得|x﹣1|+|x+1|≥3,討論當x≤﹣1時,當﹣1<x<1時,當x≥1時,去掉絕對值解不等式,最后求并集;(2)由題意可得2>f(x)min , 運用絕對值不等式的性質(zhì),可得f(x)的最小值,再由絕對值不等式的解法,可得a的范圍.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題,其中正確的個數(shù)有( )

①由獨立性檢驗可知,有的把握認為物理成績與數(shù)學成績有關,某人數(shù)學成績優(yōu)秀,則他有99%的可能物理優(yōu)秀.

②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;

③在線性回歸方程中,當解釋變量每增加一個單位時,預報變量平均增加0.2個單位;

④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關系”的把握程度越大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數(shù)圖象的一部分,當時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當注意力指數(shù)大于80時學習效果最佳.

(1)試求的函數(shù)關系式;

(2)教師在什么時段內(nèi)安排核心內(nèi)容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個不同的極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點

(1)求橢圓的方程;

(2)求的取值范圍;

(3)若直線不過點,求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[﹣ , ]上為增函數(shù),則ω的最大值為(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中錯誤的是(  )
A.設命題p:?x∈R,使+x+2<0,則¬P:?x∈R,都有+x+2≥0
B.若x,y∈R,則“x=y”是“xy≤取到等號”的充要條件
C.已知命題p和q,若p∧q為假命題,則命題p與q都為假命題
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公路 一側(cè)有一塊空地 ,其中 , .當?shù)卣當M在中間開挖一個人工湖△OMN,其中MN都在邊AB上(M,N不與AB重合,MA,N之間),且MON=30°.

(1)若M在距離A2 km處,求點MN之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

同步練習冊答案