(2012•昌平區(qū)一模)(幾何證明選做題)若A,B,C是⊙O上三點,PC切⊙O于點C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為
60°
60°
分析:由PC切⊙O于點C,OC為圓的半徑可得∠PCO=90°,由∠BCP=40°,可求得∠BCO=50°,,由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°,然后在△BOC中,由∠OBC=50°,∠ABC=110°可求∠OBA,進而可求
解答:解:∵PC切⊙O于點C,OC為圓的半徑
∴OC⊥PC,即∠PCO=90°
∵∠BCP=40°∴∠BCO=50°
由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°
∵△BOC中,∠OBC=50°,∠ABC=110°
∴∠OBA=60°
∵OB=OA
∴∠AOB=60°
故答案為:60°
點評:本題主要考查了圓的弦切角定理與圓周角定理的綜合應(yīng)用,靈活應(yīng)用圓的基本定理是解答本題的關(guān)鍵
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)一模)一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)一模)某類產(chǎn)品按工藝共分10個檔次,最低檔次產(chǎn)品每件利潤為8元.每提高一個檔次,每件利潤增加2元.用同樣工時,可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤最大時生產(chǎn)產(chǎn)品的檔次是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)一模)已知函數(shù)f(x)=lnx+
1x
+ax,x∈(0,+∞)
(a為實常數(shù)).
(1)當a=0時,求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在[2,+∞)上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)一模)如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點A,PA=AB=2,點M,N分別是PD,PB的中點.
(I)求證:PB∥平面ACM;
(II)求證:MN⊥平面PAC;
(III)求四面體A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)一模)已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=7,則|
b
|=
2
6
2
6

查看答案和解析>>

同步練習冊答案