橢圓的左、右焦點(diǎn)為,直線x=m過且與橢圓相交于A,B兩點(diǎn),則的面積等于          .
3

試題分析:橢圓中,,即m=c=1,代人橢圓方程,得,所以,的面積等于3.
點(diǎn)評:基礎(chǔ)題,涉及橢圓的“焦點(diǎn)三角形”問題,往往要運(yùn)用橢圓的定義。本題特殊可通過計(jì)算直角三角形面積計(jì)算。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過點(diǎn),其中e為橢圓的離心率.且橢圓與直線 有且只有一個交點(diǎn)。

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線與橢圓相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時(shí)直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知,,O為坐標(biāo)原點(diǎn),動點(diǎn)E滿足:

(Ⅰ) 求點(diǎn)E的軌跡C的方程;
(Ⅱ)過曲線C上的動點(diǎn)P向圓O:引兩條切線PA、PB,切點(diǎn)分別為A、B,直線AB與x軸、y軸分別交于M、N兩點(diǎn),求ΔMON面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的右焦點(diǎn)為,則該雙曲線的漸近線方程為(    )                         
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線C:被直線l:截得的弦長為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線xy+1=0與橢圓E相交于A、B(BA上方)兩點(diǎn),問是否存在直線l,使l與橢圓相交于C、D(CD上方)兩點(diǎn)且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點(diǎn).
(i)若為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)在橢圓上運(yùn)動時(shí),求點(diǎn)的軌跡方程;
(ii)若與橢圓的交點(diǎn),求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2),直線l:x+y-4=0,點(diǎn)B(x,y)是圓C:x2+y2-2x-1=0上的動點(diǎn),AD⊥l,BE⊥l,垂足分別為D、E,則線段DE的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線上不存在點(diǎn)P使得右焦點(diǎn)F關(guān)于直線OP(O為雙曲線的中心)的對稱點(diǎn)在y軸上,則該雙曲線離心率的取值范圍為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案