【題目】在直角坐標(biāo)坐標(biāo)系中,過點(diǎn)P(1,0)的直線l的參數(shù)方程為(為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知頂點(diǎn)在極軸上,開口向右的拋物線C經(jīng)過極坐標(biāo)為(2, )的點(diǎn)Q.
(1)求C的極坐標(biāo)方程;
(2)若l與C交于A、B兩點(diǎn),且|PA|=2|PB|,求tan的值。
【答案】(1);(2)
【解析】試題分析:
(1)設(shè)曲線C的直角坐標(biāo)方程為,將點(diǎn)的坐標(biāo)化為直角坐標(biāo),代入方程可得,故可得C的方程為,然后再化為極坐標(biāo)方程.(2)將直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程得到關(guān)于t的二次方程,然后根據(jù)參數(shù)t的幾何意義求解.
試題解析:
(1)設(shè)曲線的直角坐標(biāo)方程為,
由題意得點(diǎn)的直角坐標(biāo)為,
∵點(diǎn)在曲線C上,
∴,
∴的直角坐標(biāo)方程為,
將代入上式,得,
即 .
∴曲線的極坐標(biāo)方程為
(2)將代入整理得,
設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,
則,
∵,
∴,
由①③得,
代入②得,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽是我國魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時(shí)的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為,其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).
()請(qǐng)將該貨輪從甲地到乙地的運(yùn)輸成本表示為航行速度(海里/小時(shí))的函數(shù).
()要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,一條準(zhǔn)線方程為過橢圓的上頂點(diǎn)A作一條與x軸、y軸都不垂直的直線交橢圓于另一點(diǎn)P,P關(guān)于x軸的對(duì)稱點(diǎn)為Q.
求橢圓的方程;
若直線AP,AQ與x軸交點(diǎn)的橫坐標(biāo)分別為m,n,求證:mn為常數(shù),并求出此常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線,在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為 .
(1)寫出直線的參數(shù)方程,并將曲線的方程為化直角坐標(biāo)方程;
(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶70周年慶典磅礴而又歡快的場景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個(gè)品種,花車的設(shè)計(jì)團(tuán)隊(duì)對(duì)這兩個(gè)品種進(jìn)行了檢測.現(xiàn)從兩個(gè)品種中各抽測了10株的高度,得到如下莖葉圖.下列描述正確的是( )
A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長的整齊
B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長的整齊
C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長的整齊
D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長的整齊
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(e+1)
(I)求函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線方程;
(II)若函數(shù)g(x)=f(x)-ae-x,求函數(shù)g(x)在[1,2]上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某公司生產(chǎn)的商品A每件售價(jià)為5元時(shí),年銷售10萬件,
(1)據(jù)市場調(diào)查,若價(jià)格每提高一元,銷量相應(yīng)減少1萬件,要使銷售收入不低于原銷售收入,該商品的銷售價(jià)格最多提高多少元?
(2)為了擴(kuò)大該商品的影響力,公司決定對(duì)該商品的生產(chǎn)進(jìn)行技術(shù)革新,將技術(shù)革新后生產(chǎn)的商品售價(jià)提高到每件元,公司擬投入萬元作為技改費(fèi)用,投入萬元作為宣傳費(fèi)用。試問:技術(shù)革新后生產(chǎn)的該商品銷售量m至少應(yīng)達(dá)到多少萬件時(shí),才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若是的極小值點(diǎn),求實(shí)數(shù)的取值范圍及函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com