14.已知集合A={-1,0,1,2,3},B={x|(x+1)(x-2)<0,x∈Z},則A∩B=(  )
A.{1}B.{0,1}C.{-1,0,1,2}D.{-1,0,1,2,3}

分析 直接解一元二次不等式化簡(jiǎn)集合B,再由交集運(yùn)算性質(zhì)得答案.

解答 解:∵A={-1,0,1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1},
∴A∩B={-1,0,1,2,3}∩{0,1}={0,1}.
故選:B.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)f(x)滿足f(0)=2,且f(x+1)-f(x)=2x-1對(duì)任意x∈R都成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P(a,b)和點(diǎn)Q(b-1,a+1)是關(guān)于直線l對(duì)稱的兩點(diǎn),則直線l的方程為( 。
A.x+y=0B.x-y=0C.x-y+1=0D.x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果方程$\frac{{x}^{2}}{m-1}$-$\frac{{y}^{2}}{m-2}$=1表示雙曲線,那么實(shí)數(shù)m的取值范圍是(  )
A.m>2B.m<1或m>2C.-1<m<2D.m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=log3x的反函數(shù)為y=g(x),則$g(\frac{1}{2})$的值是(  )
A.3B.${log_3}\frac{1}{2}$C.log32D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=log2(x2-ax+3a)在區(qū)間[2,+∞)上遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,4)B.(-4,4)C.(-4,4]D.[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x+y)=f(x)+f(y).
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)若x<0時(shí)恒有f(x)>0,判斷函數(shù)f(x)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某電腦公司2016年的各項(xiàng)經(jīng)營(yíng)總收入中電腦配件的收入為40萬(wàn)元,占全年經(jīng)營(yíng)總收入的40%,該公司預(yù)計(jì)2018年經(jīng)營(yíng)總收入要達(dá)到169萬(wàn)元,且計(jì)劃從2016年到2018年每年經(jīng)營(yíng)總收入的年增長(zhǎng)率相同,則2017年預(yù)計(jì)經(jīng)營(yíng)總收入為130萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)等比函數(shù){an}的前n項(xiàng)和為Sn,若$\frac{{S}_{6}}{{S}_{3}}$=3,則$\frac{{S}_{12}}{{S}_{9}}$=(  )
A.$\frac{7}{3}$B.$\frac{15}{7}$C.$\frac{17}{7}$D.$\frac{8}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案