【題目】從某校高三年級(jí)中隨機(jī)抽取100名學(xué)生,對(duì)其高校招生體檢表中的視圖情況進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知從這100人中隨機(jī)抽取1人,其視力在的概率為.
(1)求的值;
(2)若某大學(xué)專業(yè)的報(bào)考要求之一是視力在0.9以上,則對(duì)這100人中能報(bào)考專業(yè)的學(xué)生采用按視力分層抽樣的方法抽取8人,調(diào)查他們對(duì)專業(yè)的了解程度,現(xiàn)從這8人中隨機(jī)抽取3人進(jìn)行是否有意向報(bào)考該大學(xué)專業(yè)的調(diào)查,記抽到的學(xué)生中視力在的人數(shù)為,求的分布列及數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中超足球隊(duì)的后衛(wèi)線上一共有7名球員,其中3人只能打中后衛(wèi),2人只能打邊后衛(wèi),2人既能打中后衛(wèi)又能打邊后衛(wèi),主教練決定選派4名后衛(wèi)上場(chǎng)比賽,假設(shè)可以隨機(jī)選派球員.
(1)在選派的4人中至少有2人能打邊后衛(wèi)的概率;
(2)在選派的4人中既能打中后衛(wèi)又能打邊后衛(wèi)的人數(shù)的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,異面直線,互相垂直,,,,,,截面分別與,,,相交于點(diǎn),,,,且平面,平面.
(1)求證:平面;
(2)求銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若,則稱為狄利克雷函數(shù).對(duì)于狄利克雷函數(shù),給出下面4個(gè)命題:①對(duì)任意,都有;②對(duì)任意,都有;③對(duì)任意,都有, ;④對(duì)任意,都有.其中所有真命題的序號(hào)是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),解析式為f(x)=.
(1)求f(x)在R上的解析式;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCDA1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于點(diǎn)Q,求證:B,Q,D1三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x2-3x)lnx
(1)求函數(shù)f(x)在x=e處的切線方程
(2)對(duì)任意的x)都存在正實(shí)數(shù)a,使得方程f(x)=a至少有2個(gè)實(shí)根, 求a的最小值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com