已知向量
m
=(sinA,cosA),
n
=(-
3
,-1),
m
n
,且A為銳角,求∠A的大。
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:由條件利用兩個(gè)向量共線的性質(zhì)求得tan A=
3
,結(jié)合A為銳角可得A的值.
解答: 解:∵向量
m
=(sinA,cosA),
n
=(-
3
,-1),
m
n
,∴-sinA+
3
cosA=0,
求得 tan A=
3
,結(jié)合A為銳角可得A=
π
3
點(diǎn)評:本題主要考查兩個(gè)向量共線的性質(zhì),根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|(x-1)2>1,x∈R},N={-1,0,1,2,3},則M∩N=(  )
A、{-1,3}
B、{-1,0,3}
C、{0,2,3}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意實(shí)數(shù)x、y都有f(x+y)=f(x)+2y(x+y),且f(1)=1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)滿足:
   ①對任意的m1,m2,m1≠m2,當(dāng)f(m1)=f(m2)時(shí),有m1+m2<0成立;
   ②對?x1,x2∈[-1,1],|f(x1)-f(x2)≤e-1恒成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|2x-a|,g(x)=
x2-a
x-1
,a>0
(1)當(dāng)a=8時(shí),求f(x)在區(qū)間[3,5]上的值域;
(2)若?t∈[3,5],?xi∈[3,5](i=1,2)且x1≠x2,使f(xi)=g(t),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐P-ABCD的底面ABCD是正方形,頂點(diǎn)P在底面的射影是AC與BD的交點(diǎn)O,AB=2,∠PAC=60°.
(Ⅰ)求側(cè)面PBC與底面ABCD所成的銳二面角的正切值;
(Ⅱ)在線段PB上是否存在一點(diǎn)E,使得AE⊥PC,若存在,試確定點(diǎn)E的位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
sin2x
的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了考察某種中藥預(yù)防流感效果,抽樣調(diào)查40人,得到如下數(shù)據(jù):服用中藥的有20人,其中患流感的有2人,而未服用中藥的20人中,患流感的有8人.
(1)根據(jù)以上數(shù)據(jù)建立2×2列聯(lián)表;
(2)能否在犯錯(cuò)誤不超過0.05的前提下認(rèn)為該藥物有效?
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于如圖程序框圖,在輸入x的值是5,則輸出y的值是
 

查看答案和解析>>

同步練習(xí)冊答案