一個(gè)家庭有兩個(gè)孩子,記A={至少有一個(gè)男孩},B={兩個(gè)都是男孩},則P(B∩A)=
 
考點(diǎn):概率的基本性質(zhì)
專題:概率與統(tǒng)計(jì)
分析:由B∩A=B={兩個(gè)都是男孩},進(jìn)而根據(jù)獨(dú)立事件概率乘法公式,可得答案.
解答: 解:∵A={至少有一個(gè)男孩},B={兩個(gè)都是男孩},
∴B∩A=B={兩個(gè)都是男孩},
∴P(B∩A)=
1
2
×
1
2
=
1
4
,
故答案為:
1
4
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是概率的基本性質(zhì),其中分析出B∩A=B={兩個(gè)都是男孩},是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,點(diǎn)A(3,3)、B(2,-2)、C(-2,1),求∠A平分線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x-
3
sinxcosx+1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(θ+
π
12
)=
5
6
,θ∈(
π
3
3
),求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某集團(tuán)為了獲得更大的利潤(rùn),每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查,每年投入廣告費(fèi)t(100萬元)可增加銷售額約為-t2+5t(100萬元)(0≤t≤3).
(1)若該集團(tuán)將當(dāng)年的廣告費(fèi)控制在300萬元以內(nèi),則應(yīng)投入多少廣告費(fèi),才能使集團(tuán)由廣告費(fèi)而產(chǎn)生的收益最大?
(2)現(xiàn)在該集團(tuán)準(zhǔn)備投入300萬元,分別用于廣告促銷和技術(shù)改造.經(jīng)預(yù)算,每投入技術(shù)改造費(fèi)x(100萬元),可增加的銷售額約為-
1
3
x3+x2+3x(100萬元).請(qǐng)?jiān)O(shè)計(jì)一個(gè)資金分配方案,使該集團(tuán)由這兩項(xiàng)共同產(chǎn)生的收益最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0 )的短軸為直徑,以頂點(diǎn)為圓心與直線y=x+
6
相切,且橢圓C的離心率為
1
2

(1)求橢圓C的方程;
(2)若A、B是橢圓C上的點(diǎn),且AB⊥x軸,M(4,0),連接直線MB交橢圓C于另一點(diǎn)D(不同于B點(diǎn)),試分析直線AD與x軸是否相交于定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]為表示不超過x的最大整數(shù),則函數(shù)y=lg[x]的定義域?yàn)?div id="xbdkmjk" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
kx2-6kx+(k+8)
的定義域?yàn)镽,則k的取值范圍是(  )
A、[1,+∞)
B、(1,+∞)
C、{0}∪(1,+∞)
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三條線段的長(zhǎng)分別為3,6,7,則用這三條線段圍成的三角形的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=|x+1|+|x-2|的最小值為a.
(Ⅰ)求a的值;
(Ⅱ)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.

查看答案和解析>>

同步練習(xí)冊(cè)答案