20.設(shè)集合M={x|2x-1<1,x∈R},N={x|log2x<1,x∈R},則M∩N等于(  )
A.[3,4)B.(2,3]C.(1,2)D.(0,1)

分析 分別運(yùn)用指數(shù)不等式和對數(shù)不等式的解法,結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,化簡集合A,B,再由交集的定義,計(jì)算即可得到所求.

解答 解:集合M={x|2x-1<1,x∈R}={x|x-1<0}={x|x<1},
N={x|log2x<1,x∈R}={x|log2x<1=log22}
={x|0<x<2},
∴M∩N={x|0<x<1}=(0,1),
故選:D.

點(diǎn)評 本題考查集合的交集運(yùn)算,注意運(yùn)用指數(shù)不等式和對數(shù)不等式的解法,結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果復(fù)數(shù)$\frac{2-ai}{1+i}$(其中i為虛數(shù)單位,a∈R)為純虛數(shù),則a=( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.18、如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=PC=1,$PB=PD=\sqrt{2}$,E為線段PD上一點(diǎn),且PE=2ED.
(Ⅰ)若F為PE的中點(diǎn),證明:BF∥平面ACE;
(Ⅱ)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)z,滿足z(2-i)=2+4i,則復(fù)數(shù)z等于( 。
A.2iB.-2iC.2+iD.-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,$\overrightarrow m=(a,2b-c)$,$\overrightarrow n=(cosA,cosC)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)且角A的大;
(Ⅱ)已知$a=2\sqrt{5}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow a=(sinθ,1)$,$\overrightarrow b=(-sinθ,0)$,$\overrightarrow c=(cosθ,-1)$,且$(2\overrightarrow a-\overrightarrow b)∥\overrightarrow c$,則sin2θ等于$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=mex-x-2(其中e為自然對數(shù)的底數(shù))
(1)若f(x)>0在R上恒成立,求m的取值范圍;
(2)若f(x)的兩個(gè)零點(diǎn)為x1,x2,且x1<x2,求$y=({e^{x_2}}-{e^{x_1}})(\frac{1}{{{e^{x_2}}+{e^{x_1}}}}-m)$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x∈R||x|≥2},B={x∈R|x2-x-2<0},則下列結(jié)論正確的是( 。
A.A∪B=RB.A∩B≠∅C.A∪B=∅D.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形,且平面ABEF⊥平面ABCD,M為AF的中點(diǎn),
(I)求證:AC⊥BM;
(2)求異面直線CE與BM所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案