17.已知函數(shù)f(x)=-x2+2x,g(x)=|f(x)|.
(1)求f(x)在區(qū)間[-1,2]上的最小值;
(2)作出函數(shù)g(x)的圖象,并根據(jù)圖象寫出其單調(diào)減區(qū)間;
(3)若函數(shù)y=g(x)-log2m至少有三個零點,求實數(shù)m的取值范圍.

分析 (1)根據(jù)二次函數(shù)的性質(zhì)即可求出函數(shù)的最小值,
(2)先化為分段函數(shù),再畫圖即可,并根據(jù)圖象寫出其單調(diào)減區(qū)間,
(3)由題意可知y=g(x)與y=log2m的兩圖象至少有三個交點,結(jié)合圖象可得.

解答 解:(1)∵f(x)在[-1,1]上是增函數(shù),在(1,2]上是減函數(shù),
∴f(x)min=f(-1)=-1-2=-3.
(2)∵$g(x)=\left\{\begin{array}{l}-{x^2}+2x,0≤x≤2\\{x^2}-2x,x<0或x>2\end{array}\right.$
∴作出函數(shù)g(x)的圖象如圖,

故函數(shù)g(x)的單調(diào)遞減區(qū)間是(-∞,0)和(1,2).
(3)由題意可知y=g(x)與y=log2m的兩圖象至少有三個交點,
所以根據(jù)(2)中圖象可得0<log2m≤1,
∴1<m≤2,
即m∈(1,2].

點評 本題考查了二次函數(shù)的圖象和性質(zhì)以及絕對值函數(shù)圖象的畫法和參數(shù)的取值范圍,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植果樹,但需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿足果樹生長的需要,該光源照射范圍是$∠ECF=\frac{π}{6}$,點E,F(xiàn)在直徑AB上,且$∠ABC=\frac{π}{6}$.
(1)若$CE=\sqrt{13}$,求AE的長;
(2)設(shè)∠ACE=α,求該空地種植果樹的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知偶函數(shù)f(x)在區(qū)間(-∞,0]單調(diào)遞減,f(-1)=$\frac{1}{2}$,則滿足2f(2x-1)-1<0的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中為偶函數(shù)的是( 。
A.y=sin|x|B.y=sin2xC.y=-sinxD.y=sinx+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)={log_2}({x^2}-2ax+3)$在區(qū)間$(\frac{1}{2},1)$上為減函數(shù),則a的取值范圍為[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx>cosx}\\{cosx,sinx≤cosx}\end{array}\right.$,關(guān)于f(x)的敘述
①最小正周期為2π
②有最大值1和最小值-1
③對稱軸為直線$x=kπ+\frac{π}{4}({k∈Z})$
④對稱中心為$({kπ+\frac{π}{4},0})(k∈Z)$
⑤在$[{\frac{π}{2},π}]$上單調(diào)遞減
其中正確的命題序號是①③⑤.(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列結(jié)論正確的個數(shù)為(  )
①命題“?x∈R,x2≥0”的否定是“?x0∈R,${x_0}^2≤0$”;
②命題“若$m≤\frac{1}{2}$,則方程mx2+2x+2=0有實數(shù)根”的否命題為真命題;
③“x≠3”是“|x|≠3”成立的充分不必要條件;
④銳角△ABC中,一定有“cosB<sinA<tanA”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.中央電視臺第一套節(jié)目午間新聞的播出時間是每天中午12:00到12:30,在某星期天中午的午間新聞中將隨機(jī)安排播出時長5分鐘的有關(guān)電信詐騙的新聞報道.若小張于當(dāng)天12:20打開電視,則他能收看到這條新聞的完整報道的概率是( 。
A.$\frac{2}{5}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若a∈R,則“a=1”是“|a|=1”的充分不必要條件.(填“充分不必要”,“必要不充分”,“充要”
或“既不充分也不必要”)

查看答案和解析>>

同步練習(xí)冊答案