如圖所示的多面體是由底面為ABCD的長方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(Ⅰ)求BF的長;
(Ⅱ)求二面角E-FC1-C的余弦值.

解:(I)建立如圖所示的空間直角坐標系,則D(0,0,0),B(2,4,0)A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3)設(shè)F(0,0,z).
∵AEC1F為平行四邊形,

即(-2,0,z)=(-2,0,2),∴z=2.
∴F(0,0,2).

(II)設(shè)為平面AEC1F的法向量且=(x,y,z)
=(-2,0,0)
設(shè)二面角E-FC1-C為α,則cosα=
分析:(I)由長方體的幾何特征,我們可以建立空間坐標系,設(shè)出F點的坐標,我們易根據(jù)截面AEC1F為平行四邊形,,得到F點的坐標;
(II)我們分別求出平面EFC1及平面FC1C的法向量,代入向量夾角公式,即可得到二面角E-FC1-C的余弦值.
點評:本題考查的知識點是二面角的平面角及求法,空間中點的坐標,其中(I)的關(guān)鍵是根據(jù)平行四邊形法則,得到,(II)的關(guān)鍵是求出平面EFC1及平面FC1C的法向量將二面角問題轉(zhuǎn)化為向量夾角問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示的多面體是由底面為ABCD的長方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(Ⅰ)求BF的長;
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示的多面體是由底面為ABCD的長方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(Ⅰ)求BF的長;
(Ⅱ)求點C到平面AEC1F的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:如圖所示的多面體是由底面為ABCD的長方體被截面AEGF所截得的,其中AB=4,BC=2,CG=3,BE=1,
(1)求:BF與平面BCGE所成角的正切值
(2)求:截面AEGF與平面ABCD所成的二面角的余弦值
(3)在線段CG上是否存在一點M,使得M在平面AEGF上的射影恰為△EGF的重心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中.

   (Ⅰ)求的長;

   (Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省紅色六校高三第一次月考理科數(shù)學試卷 題型:解答題

如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中,.

(Ⅰ)求的長;

(Ⅱ)求點到平面的距離.

 

 

 

查看答案和解析>>

同步練習冊答案