分析 (1)由題意,得出A、ω與φ的值,再寫出函數(shù)f(x)的解析式;
(2)根據(jù)函數(shù)圖象平移法則,得出函數(shù)y=g(x)的解析式,
再用列表作圖法畫出y=g(x)在長度為一個(gè)周期的閉區(qū)間上的簡圖即可.
解答 解:(1)由題意可得,A=2,$\frac{T}{2}$=$\frac{π}{ω}$=3π,
解得ω=$\frac{1}{3}$;
再把點(diǎn)(0,1)代入函數(shù)的解析式可得:
2sin($\frac{1}{3}$×0+φ)=1,即 sinφ=$\frac{1}{2}$;
再結(jié)合|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{6}$,
故此函數(shù)的解析式為f(x)=2sin($\frac{1}{3}$x+$\frac{π}{6}$);
(2)將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{3}$(縱坐標(biāo)不變),
得函數(shù)y=2sin(x+$\frac{π}{6}$);
然后將所得圖象向右平移$\frac{π}{3}$,得y=2sin(x-$\frac{π}{3}$+$\frac{π}{6}$)=2sin(x-$\frac{π}{6}$)的圖象;
所以函數(shù)y=g(x)=2sin(x-$\frac{π}{6}$);
用列表作圖的方法畫出y=g(x)=2sin(x-$\frac{π}{6}$)在長度為一個(gè)周期的閉區(qū)間上的簡圖如下:
x-$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{6}$ | $\frac{2π}{3}$ | $\frac{7π}{6}$ | $\frac{5π}{3}$ | $\frac{13π}{6}$ |
y=2sin(x-$\frac{π}{6}$) | 0 | 2 | 0 | -2 | 0 |
點(diǎn)評(píng) 本題主要考查三角函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題的作圖,也考查了作圖問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2,3,5} | C. | { 2,3,5} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a-b | B. | 2b-a | C. | b-a | D. | -( b-a ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)+f(2)≤2f(1) | B. | f(0)+f(2)<2f(1) | C. | f(0)+f(2)≥2f(1) | D. | f(0)+f(2)>2f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com