(本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),
(I)求動(dòng)點(diǎn)的軌跡的方程
(II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長是否為定值?請說明理由.
解:(I) 依題意知,直線的方程為:.……………2分

點(diǎn)是線段的中點(diǎn),且,∴是線段的垂直平分線.……………4分
點(diǎn)到直線的距離.
∵點(diǎn)在線段的垂直平分線,
.……………6分
故動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,
其方程為:.……………8分
(II),軸的距離為,…………9分
圓的半徑,…………10分
,……………12分
由(I)知,
所以,是定值.……………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,且
橢圓經(jīng)過圓的圓心C。
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線與橢圓交于A、B兩點(diǎn),點(diǎn)且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知焦點(diǎn)在軸上的雙曲線的漸近線方程是,則該雙曲線的離心率是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的左準(zhǔn)線與兩條漸近線交于 兩點(diǎn),左焦點(diǎn)在以為直徑的圓內(nèi),則該雙曲線的離心率的取值范圍為( )
A.B.C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)第一題滿分4分,第二題滿分6分,第三題滿分6分.
已知?jiǎng)訄A過定點(diǎn)P(1,0),且與定直線相切。
(1)求動(dòng)圓圓心的軌跡M的方程;
(2)設(shè)過點(diǎn)P,且傾斜角為的直線與曲線M相交于A,B兩點(diǎn),A,B在直線上的射影是。求梯形的面積;
(3)若點(diǎn)C是(2)中線段上的動(dòng)點(diǎn),當(dāng)△ABC為直角三角形時(shí),求點(diǎn)C的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知橢圓C:+=1(a>b>0)的長軸長為4.
(1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線yx+2相切,求橢圓C的焦點(diǎn)坐標(biāo);
(2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過焦點(diǎn)的直線l與橢圓相交于M,N兩點(diǎn),記直線PMPN的斜率分別為kPM、kPN,當(dāng)kPM·kPN=-時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在下列命題中:
①方程|x|+|y|=1表示的曲線所圍成區(qū)域面積為2;
②與兩坐標(biāo)軸距離相等的點(diǎn)的軌跡方程為y=±x;
③與兩定點(diǎn)(-1,0)、(1,0)距離之和等于1的點(diǎn)的軌跡為橢圓;
④與兩定點(diǎn)(-1,0)、(1,0)距離之差的絕對值等于1的點(diǎn)的軌跡為雙曲線.
正確的命題的序號是________.(注:把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)A(x1,y1),B(x2,y2)是拋物線y=2x2上的兩點(diǎn),直線是AB的垂直平分線
(理)當(dāng)直線的斜率為時(shí),則直線在y軸上截距的取值范圍是   
(文)當(dāng)且僅當(dāng)x1+x2      值時(shí),直線過拋物線的焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的右焦點(diǎn),其右準(zhǔn)線與軸的交點(diǎn)為A,在橢圓上存在點(diǎn)P滿足線段AP的垂直平分線過點(diǎn),則橢圓離心率的取值范圍是     

查看答案和解析>>

同步練習(xí)冊答案