【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處切線的方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時(shí),恒成立,求a的取值范圍.

【答案】(1).

(2)時(shí),的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為;

時(shí),的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

(3).

【解析】

(1)求出函數(shù)的導(dǎo)函數(shù),代入,求得,再求,利用直線方程的點(diǎn)斜式求解即可.

(2)求出,通過討論的取值,分別求出,所對(duì)應(yīng)的區(qū)間即為函數(shù)的單調(diào)區(qū)間.

(3)當(dāng)時(shí)恒成立等價(jià)于恒成立,令,由導(dǎo)數(shù)求出函數(shù)的最大值,即可求得的取值范圍.

(1),得.

當(dāng)時(shí),,,即函數(shù)處的切線斜率為0.

,故曲線在點(diǎn)處切線的方程為.

(2).

,

①若,由;由,又,

所以上單調(diào)遞增,在上單調(diào)遞減.

,由;由,又,

所以上單調(diào)遞增,在上單調(diào)遞減.

綜上所述,時(shí),的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

時(shí)的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

(3)時(shí),恒成立,恒成立.

,則.

時(shí),,.

上單調(diào)遞減,在上單調(diào)遞增,則.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足:對(duì)任意的,當(dāng)時(shí),都有.

(1)若,求實(shí)數(shù)的取值范圍;

(2)若為周期函數(shù),證明:是常值函數(shù);

(3)若上滿足:,

①記),求數(shù)列的通項(xiàng)公式;② 求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方

向滾動(dòng),MN是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這

樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱中,,四邊形是菱形,.

(1)求證:

(2)若平面平面,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考慮下面兩個(gè)定義域?yàn)椋?/span>0,+∞)的函數(shù)fx)的集合:對(duì)任何不同的兩個(gè)正數(shù),都有=對(duì)任何不同的兩個(gè)正數(shù),都有

1)已知,若,且,求實(shí)數(shù)的取值范圍

2)已知,的部分函數(shù)值由下表給出:

比較4的大小關(guān)系

3)對(duì)于定義域?yàn)?/span>的函數(shù),若存在常數(shù),使得不等式對(duì)任何都成立,則稱的上界,將中所有存在上界的函數(shù)組成的集合記作,判斷是否存在常數(shù),使得對(duì)任何,都有,若存在,求出的最小值,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

1)求的值;

2)求上的最大值和最小值;

3)不畫圖,說明函數(shù)的圖象可由的圖象經(jīng)過怎樣變化得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案