【題目】設m,n是不同的直線,α,β,γ是不同的平面,有以下四個命題:
①
②
③
④
其中,真命題是( )
A.①④
B.②③
C.①③
D.②④
【答案】C
【解析】解:
對于①利用平面與平面平行的性質定理可證α∥β,α∥γ,則β∥γ,正確
對于②面BD⊥面D1C,A1B1∥面BD,此時A1B1∥面D1C,不正確
對應③∵m∥β∴β內有一直線與m平行,而m⊥α,
根據(jù)面面垂直的判定定理可知α⊥β,故正確
對應④m有可能在平面α內,故不正確,
故選C
【考點精析】掌握命題的真假判斷與應用和平面的基本性質及推論是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系;如果一條直線上的兩點在一個平面內,那么這條直線在此平面內;過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+mx﹣4在區(qū)間[﹣2,1]上的兩個端點處取得最大值和最小值.
(1)求實數(shù)m的所有取值組成的集合A;
(2)試寫出f(x)在區(qū)間[﹣2,1]上的最大值g(m);
(3)設h(x)=﹣ x+7,令F(m)= ,其中B=RA,若關于m的方程F(m)=a恰有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為( )
A.2,4
B.3,4
C.2,5
D.2,6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)),記的導函數(shù)為.
(1) 證明:當時, 在上的單調函數(shù);
(2)若在處取得極小值,求的取值范圍;
(3)設函數(shù)的定義域為,區(qū)間.若在上是單調函數(shù),則稱在上廣義單調.試證明函數(shù)在上廣義單調.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問部分職工,根據(jù)被訪問職工對該部門的評分,繪制頻率分布直方圖(如圖所示).
(1)求頻率分布表中①、②、③位置相應數(shù)據(jù),并在答題紙上完成頻率分布直方圖;
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 5 | 0.050 |
第2組 | [60,70) | ① | 0.350 |
第3組 | [70,80) | 30 | ② |
第4組 | [80,90) | 20 | 0.200 |
第5組 | [90,100] | 10 | 0.100 |
合計 | ③ | 1.00 |
(2)為進一步了解情況,該企業(yè)決定在第3,4,5組中用分層抽樣抽取5名職工進行座談,求第3,4,5組中各自抽取的人數(shù);
(3)求該樣本平均數(shù) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ∥ ,求 的值;
(2)已知函數(shù)f(x)=2( + ) ﹣2m2﹣1,若函數(shù)f(x)在[0, ]上有零點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…,(xn , yn),則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 = x+ 必過樣本中心( , )
B.殘差平方和越小的模型,擬合的效果越好
C.用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個隨機變量的線性相關性越強,相關系數(shù)的絕對值越接近于1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com