【題目】下列命題是假命題的是( )
A. 某企業(yè)有職工150人,其中高級職稱15人,中級職稱45人,一般職員90人,若用分層抽樣的方法抽出一個容量為30的樣本,則一般職員應(yīng)抽出18人;
B. 用獨立性檢驗(列聯(lián)表法)來考察兩個分類變量是否有關(guān)系時,算出的隨機變量的值越大,說明“與有關(guān)系”成立的可能性越大;
C. 已知向量,,則是的必要條件;
D. 若,則點的軌跡為拋物線.
【答案】D
【解析】
根據(jù)分層抽樣的概念易得,解出方程即可判斷為真;用獨立性檢驗(列聯(lián)表法)的判定方法即可得出B為真;根據(jù)充分條件和必要條件的定義以及向量的數(shù)量積的應(yīng)用,進行判斷即可得到C為真;可將原式化為,表示動點到定點和到動直線距離相等的點的軌跡,但是定點在定直線上,故可判斷D.
設(shè)一般職員應(yīng)抽出人,根據(jù)分層抽樣的概念易得,解得,即一般職員應(yīng)抽出18人,故A為真;
用獨立性檢驗(列聯(lián)表法)來考察兩個分類變量是否有關(guān)系時,算出的隨機變量的值越大,說明“與有關(guān)系”成立的可能性越大,可知B為真;
若,則,即不成立,若,則,即成立,故是的必要條件,即C為真;
方程即:,
化簡得,
即表示動點到定點的距離和到直線的距離相等的點的集合,
且在直線上,故其不滿足拋物線的定義,即D為假,故選D.
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了個蜜柚進行測重,其質(zhì)量分別在,,,,, (單位:克)中,其頻率分布直方圖如圖所示,
(Ⅰ)已經(jīng)按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取了個,現(xiàn)從這個蜜柚中隨機抽取個。求這個蜜柚質(zhì)量均小于克的概率:
(Ⅱ)以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有個蜜柚等待出售,某電商提出了兩種收購方案:
方案一:所有蜜柚均以元/千克收購;
方案二:低于克的蜜柚以元/個收購,高于或等于克的以元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)設(shè)函數(shù),證明:是函數(shù)有兩個零點的充分條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線與拋物線交于、兩點,且當直線斜率為2時,.
(1)求拋物線的標準方程;
(2)過點作拋物線的兩條弦與,問在軸上是否存在一定點,使得直線過點時,為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,討論函數(shù)的單調(diào)性;
(2)若不等式對于任意成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓C過點,焦點,圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P.
①若直線l與橢圓C有且只有一個公共點,求點P的坐標;
②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是( )
A.與具有正線性相關(guān)關(guān)系
B.回歸直線過樣本的中心點
C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com