5.已知向量$\overrightarrow a=(2,5)$,$\overrightarrow b=(x,-2)$,且$\overrightarrow a⊥\overrightarrow b$,則x=5,$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{58}$.

分析 根據(jù)向量的垂直,求出x的值,求出向量$\overrightarrow{a}$-$\overrightarrow$,求出$|{\overrightarrow a-\overrightarrow b}|$的值即可.

解答 解:∵向量$\overrightarrow a=(2,5)$,$\overrightarrow b=(x,-2)$,且$\overrightarrow a⊥\overrightarrow b$,
∴2x-10=0,解得:x=5,
故$\overrightarrow{a}$-$\overrightarrow$=(-3,7),
故|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{9+49}$=$\sqrt{58}$,
故答案為:$\sqrt{58}$.

點評 本題考查了向量的垂直問題,考查向量的減法以及向量求模問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列隨機變量中不是離散型隨機變量的是( 。
A.擲5次硬幣正面向上的次數(shù)M
B.某人每天早晨在某公共汽車站等某一路車的時間T
C.從標(biāo)有數(shù)字1至4的4個小球中任取2個小球,這2個小球上所標(biāo)的數(shù)字之和Y
D.將一個骰子擲3次,3次出現(xiàn)的點數(shù)之和X

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從7人中選派5人到10個不同崗位的5個中參加工作,則不同的選派方法有( 。
A.$C_7^5A_{10}^5A_5^5$種B.$A_7^5C_{10}^5A_5^5$種
C.$C_{10}^5C_7^5$種D.$C_7^5A_{10}^5$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+x2f'(2),則f'(2)的值為( 。
A.-4B.4C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=alnx+$\frac{{2{a^2}}}{x}$(a≠0),g(x)=3-x.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)a=1時,設(shè)F(x)=f(x)-g(x),求證:對于定義域內(nèi)的任意一個,都有F(x)≥0.
(3)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面內(nèi)的三個向量,其中$\overrightarrow a=(1,-1)$.
(1)若$|{\overrightarrow c}|=3\sqrt{2}$,且$\overrightarrow c∥\overrightarrow a$,求向量$\overrightarrow c$的坐標(biāo);
(2)若$|{\overrightarrow b}|=1$,且$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow b)$,求$\overrightarrow a$與$\overrightarrow b$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.底面是正方形,容積為16的無蓋水箱,它的高為2$\root{3}{4}$時最省材料.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.觀察下列等式
1=1                    
2+3+4=9                
3+4+5+6+7=25            
4+5+6+7+8+9+10=49      
5+6+7+8+9+10+11+12+13=81
照此規(guī)律下去
(Ⅰ)寫出第6個等式;
(Ⅱ)你能做出什么一般性的猜想?請用數(shù)學(xué)歸納法證明猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a+lnx}{x-1}$(x>1)
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)a=0時,判斷函數(shù)f(x)的單調(diào)性;
(3)當(dāng)x>1時,證明:$\frac{lnx}{x-1}$>$\frac{ln({e}^{x}-1)}{{e}^{x}-2}$(e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案