不等式2|x|+|x-1|<2的解集是        

 

【答案】

{x|-<x<1}或(-,1)  

【解析】

試題分析:根據(jù)題意,由于不等式2|x|+|x-1|<2等價(jià)于x<0,-2x+1-x<2,得到-<x;當(dāng)x>1,則可知3x-1<2,x<1,當(dāng),x+1<2,得到x<1;綜上可知不等式的解集為{x|-<x<1}或(-,1)

考點(diǎn):絕對(duì)值不等式

點(diǎn)評(píng):主要是考查了絕對(duì)值不等式的求解,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、A.化極坐標(biāo)方程ρ2cosθ-ρ=0為直角坐標(biāo)方程為
x2+y2=0或x=1

B.不等式|2-x|+|x+1|≤a對(duì)任意x∈[0,5]恒成立的實(shí)數(shù)a的取值范圍為
[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時(shí),直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當(dāng)m=1時(shí),設(shè)M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x+a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:令f(x)=21-x+a,因?yàn)閒(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上單調(diào)遞減
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題,已知:函數(shù)f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函數(shù)f-1(x)及反函數(shù)的定義域A;
②設(shè)B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•渭南二模)(不等式選講)不等式|2-x|+|x+1|<a對(duì)于任意x∈[0,6]恒成立的實(shí)數(shù)a的集合為
{a|a≥11}
{a|a≥11}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A)選修4-1:幾何證明選講
如圖,⊙O的割線PAB交⊙O于A,B兩點(diǎn),割線PCD經(jīng)過(guò)圓心交⊙O于C,D兩點(diǎn),若PA=2,AB=4,PO=5,則⊙O的半徑長(zhǎng)為
13
13


(B)選修4-4:坐標(biāo)系與參數(shù)方程
參數(shù)方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中當(dāng)t為參數(shù)時(shí),化為普通方程為
x2-y2=1(x≥1)
x2-y2=1(x≥1)

(C)選修4-5:不等式選講
不等式|2-x|+|x+1|≤a對(duì)于任意x∈[0,5]恒成立的實(shí)數(shù)a的集合為
{a|a≥9}
{a|a≥9}

查看答案和解析>>

同步練習(xí)冊(cè)答案