點M到一個定點F(0,2)的距離和它到一條定直線y=8的距離之比是1∶2,則M點的軌跡方程是__________.

答案:=1

解析:根據(jù)橢圓第二定義可知,橢圓焦點為(0,2),y==8,e=.由c=2,=8,得a=4,滿足e=.

∴橢圓方程為=1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓M過定點F(0,-
2
),且與直線y=
2
相切,橢圓N的對稱軸為坐標軸,一個焦點為F,點A(1,
2
)在橢圓N上.
(1)求動圓圓心M的軌跡Γ的方程及橢圓N的方程;
(2)若動直線l與軌跡Γ在x=-4處的切線平行,且直線l與橢圓N交于B,C兩點,試求當△ABC面積取到最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)如圖,已知動圓M過定點F(0,1)且與x軸相切,點F關于圓心M的對稱點為F′,動點F′的軌跡為C.
(1)求曲線C的方程;
(2)設A(x0,y0)是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的距離最大,求點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

M到一個定點F(0,2)的距離和它到一條定直線y=8的距離之比是1∶2,則M點的軌跡方程是?

查看答案和解析>>

同步練習冊答案